

REPORT

Hydrogeological Investigation

2451-2495 Danforth Avenue Toronto, Ontario

Submitted to:

First Capital Asset Management LP

85 Hanna Avenue, Suite 400 Toronto, Ontario M6K 3S3

Attention: Albert Ho

Submitted by:

WSP Canada Inc.

121 Commerce Park Drive Unit L Barrie. Ontario L4N 8X1

22535291

November 8, 2024

Distribution List

E-Copy - WSP Canada Inc

E-Copy - First Capital Asset Management LP

i

Table of Contents

1.0	INTRO	DDUCTION	1
	1.1	Scope of Work	1
2.0	PROJ	ECT DESCRIPTION AND AVAILABLE INFORMATION	2
3.0	INVE	STIGATION OVERVIEW	2
	3.1	Existing Reports	2
4.0	DESK	TOP ASSESSMENT	2
	4.1	Topography and Drainage	2
	4.2	Physiography and Geology	2
	4.3	Groundwater Use	3
	4.4	Potential Contaminant Sources	3
5.0	Field	Investigation	3
	5.1	Drilling and Well Installations	3
	5.2	Groundwater Level Measurements	4
	5.3	Hydraulic Conductivity	5
	5.4	Groundwater Quality	5
	5.5	Hydrogeological Summary and Conceptual Site Model	6
6.0	DEW	ATERING EVALUATION	7
	6.1	Dewatering Zone of Influence	7
	6.2	Water Taking Needs	8
	6.2.1	Dewatering Rates for Removal from Storage and Precipitation Events	8
	6.2.2	Total Construction Dewatering Rate	8
	6.2.3	Total Long-Term Dewatering Rate	9
7.0	ASSE	SSMENT OF POTENTIAL EFFECTS OF WATER TAKING	9
	7.1	Mobilization of Contaminants	9
	7.2	Groundwater Resources	.10
	7.3	Surface Water Resources / Natural Heritage Features	10

	7.4	Geotechnical Assessment	10
8.0	DISC	HARGE PLAN	11
	8.1	Discharge Criteria for Total Suspended Solids and Turbidity	11
	8.2	Discharge Criterion for Temperature	11
9.0	PRO	POSED MONITORING, MITIGATION AND CONTINGENCY PLAN	11
	9.1	Discharge Water Monitoring	11
	9.2	Groundwater Level Monitoring	13
10.0	MON	ITORING WELL DECOMMISSIONING	13
11.0	LIMIT	TATIONS	13
12.0	REFE	ERENCES	14
TAE	LES		
Tabl	e 1: M	onitoring Well Installation Details	4
Tabl	e 2: Si	ngle-Well Response Test Summary	5
Tabl	e 3: Co	onceptual Model Summary	6
Tabl	e 4: Sı	ımmary of Total Construction Dewatering Capacity	9
Tabl	e 5: Sı	ımmary of Anticipated Settlement Due to Dewatering	10

FIGURES

Figure 1: Key Plan

Figure 2: Site Plan

Figure 3: Reported Water Well Records

Figure 4: Cross Section A-A'

Figure 5: Groundwater Flow

APPENDICES

APPENDIX A

Important Information and Limitations of This Report

APPENDIX B

MECP Water Well Records

APPENDIX C

Borehole Logs

APPENDIX D

Single Well Response Testing Results

APPENDIX E

Laboratory Analysis Results

1.0 INTRODUCTION

WSP Canada Inc. (WSP) has been retained by First Capital Asset Management LP ("FCAM" / "Client") to carry out a hydrogeological investigation in support of the proposed mix use development to be located at 2451-2495 Danforth Avenue in the City of Toronto, Ontario, M4C 1L1 (the "Site"), at the location shown on Figure 1 and Figure 2. The terms of reference for the hydrogeological consulting services are included in WSP's proposal No. CX22535291 dated July 5, 2022. Authorization to proceed with the investigation was received in the form of the signed Authorization to Proceed on August 5, 2022. Water takings in excess of 50 cubic metres per day (m³/day) are regulated by the Ontario Ministry of the Environment, Conservation and Parks (MECP). A Permit or Agreement is required from the City of Toronto (City) for temporary and long-term discharges to the municipal sewer system.

The purposes of the assessment are: i) to assess temporary and long-term groundwater taking rates based on current design details and existing subsurface investigation data, and ii) to sample and assess existing groundwater quality to evaluate potential groundwater discharge options to the sewer system. An assessment of potential impacts to groundwater receptors and existing structures as a result of dewatering is provided. A recommended monitoring program is also included. It is understood that this report will be used in support of development applications to the City. This report was prepared in consideration of the Hydrological Review terms of reference outlined by the City (revised August 2018), Foundation Drainage Guidelines by the City, November 1, 2021, as well as the Ontario Water Resources Act, Ontario Regulation 387/04 and Toronto Municipal Code Chapter 681-Sewers. The hydrological review summary was prepared on November 8, 2024, by John Piersol, P.Geo., of WSP Canada Inc. and has been included as an attachment to this report.

This report should be read in conjunction with the "Important Information and Limitations of This Report" in Appendix A, which forms an integral part of this document. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report. The factual data, interpretations and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. If the project is modified in concept, location or elevation, or if the project is not initiated within eighteen months of the date of the report, WSP should be given an opportunity to confirm that the recommendations in this report are still valid. It should be noted that this report addresses only the hydrogeological (physical) aspects of the subsurface conditions at the Site. The geotechnical (physical) aspects of the project are addressed by WSP under separate cover.

1.1 Scope of Work

The scope of work for the current hydrogeological investigation consisted of:

- Reviewing published information sources and data collected at the Site;
- Drilling and installation of monitoring wells as part of the concurrent environmental and geotechnical investigations;
- Collecting groundwater level measurements from the monitoring wells;
- Conducting hydraulic conductivity measurements at selected monitoring wells;
- Conducting groundwater quality sampling;
- Estimating both short-term and long-term dewatering requirements; and,

Preparing a hydrogeological report suitable for submission to the City of Toronto in support of a development application.

2.0 PROJECT DESCRIPTION AND AVAILABLE INFORMATION

The Site is located at the southeast corner of the intersection of Danforth Avenue and Westlake Avenue, in the city of Toronto, Ontario. The Site is bordered by Danforth Avenue to the north, Westlake Avenue to the west, residential properties and Stephenson Park to the south, and commercial buildings to the east. The project area is currently occupied by a commercial property (grocery store) located centrally on the subject property with associated paved parking areas located to the east and west of the building. It is understood that the existing structures on Site are to be demolished as part of the construction process.

Based on the information and preliminary plans provided by the Client, it is understood that the existing building on the Site will be demolished and redeveloped with two 10-storey mixed-use buildings, with the remainder of the Site to include a driveway along the south property limits and a dedicated parkland area at the northwest corner. Two levels of underground parking is currently being considered for the development, anticipated to generally extend from lot-line to lot-line. For the purpose of this report, it is assumed that two levels of underground parking will be constructed and will extend approximately 7.0 m below ground surface (mbgs). Footings and elevator shafts are expected to typically extend no more than 2 m below the finished floor grade of the lowest level (9 mbgs). The footings and elevator shafts are proposed to be watertight.

3.0 INVESTIGATION OVERVIEW

3.1 Existing Reports

The following concurrent investigations have been carried out at the Site:

WSP Canada Inc. Report No. 22535291 (1000), entitled, "Geotechnical Investigation, Proposed Commercial and Residential Development, 2451-2495 Danforth Avenue, Toronto, Ontario" dated February 26, 2024 (WSP 2024).

4.0 DESKTOP ASSESSMENT

4.1 Topography and Drainage

Based on survey data collected during the investigation, the ground surface at the Site is relatively flat, with a geodetic elevation ranging from approximately 131.2 metres above sea level (masl) to 130.2 masl. The ground surface in the vicinity of the Site slopes towards Lake Ontario to the South. The closest surface water feature to the Site is Taylor-Massey Creek, located approximately 1.2 km to the northeast of the Site. It is expected that surface water runoff at the Site would discharge to the municipal storm sewer system.

4.2 Physiography and Geology

The surficial geology aspects of the general Site area were reviewed from the following publications:

- Chapman, L.J., and Putnam, D.F., 2007, "The Physiography of Southern Ontario"; 4th Edition, Ontario Geological Survey; and,
- Sharpe, D.R., 1980. Quaternary Geology of Toronto and Surrounding Area; Ontario Geological Survey Preliminary Map P. 2204, Geological Series; scale 1:100,000.

Physiographic mapping in the area according to the above-noted reference indicates that the Site lies within the physiographic region of southern Ontario known as the Iroquois Plain. The Iroquois Plain region covers the border of the lake shore extending from the City of Trenton in the east to the city of St. Catharines in the southwest. The Iroquois Plain refers to an area of lowland that borders the present-day Lake Ontario, which was formed within the basin of Glacial Lake Iroquois, which was a larger and higher version of Lake Ontario. Lake Iroquois sediments consist both of granular soils (silt and sand) and finer-grained silt and clay soils. Apart from the naturally deposited soils within the study area, fills such as engineered fills and landscape fills are to be expected within the study area. The overburden within the Iroquois Plain in the vicinity of the study area is underlain by shale bedrock of the Georgian Bay Formation, which contains limestone interlayers. Surface and groundwater flow is predominantly to the south toward Lake Ontario.

The surficial geology mapping indicates that the Site lies within a region consisting of coarse-textured glaciolacustrine deposits of sand, gravel and minor silt and clay.

4.3 Groundwater Use

Municipally supplied potable water is expected in this portion of Toronto. Nevertheless, water well records in the vicinity of the Site were obtained from the MECP to assess potential groundwater use. Approximately 172 records for water wells located within 500 m of the Site were identified, and their locations are shown on Figure 3. Little information was provided on 33 of the records, which are not discussed further. The remaining 139 wells were constructed between 2004 and 2019, and are:

- Records of well abandonment or not used (6);
- Test holes, observation wells or wells used for monitoring purposes (131);
- One commercial water supply well (1); and,
- One dewatering well (1).

A commercial water supply well was identified approximately 300 m northwest of the Site. A table summarizing the water well records is provided in Appendix B.

4.4 Potential Contaminant Sources

WSP is currently preparing a Phase I ESA, which should be reviewed when available to identify any Areas of Potential Environmental Concern (APECs).

5.0 Field Investigation

5.1 Drilling and Well Installations

The combined geotechnical, hydrogeological and environmental field investigation for this assignment was carried out from September 11 to 12, September 14 to 17, and September 23, 2023, during which time seven boreholes (designated as BH23-1 to BH23-7) were advanced. The boreholes for the investigation were drilled using a standard track-mounted D-20 drill rig supplied and operated by Altech Drilling and Investigative Services Ltd. of Cambridge, Ontario, subcontracted to WSP. The approximate borehole locations are shown on Figure 2 and an inferred geologic cross section is shown on Figure 4. The Record of Borehole sheets can be found in Appendix C.

Each borehole was completed as a 50-millimetre (mm) diameter monitoring well, consisting of a PVC riser pipe, with a slotted screen sealed at a selected depth within the borehole. The annular borehole space around each screened interval was backfilled with silica sand, to a height of approximately 0.3 m above the top of the screen. The remaining annular space was backfilled to ground surface with bentonite chips. The well installation details are presented on the Record of Borehole sheets (Appendix C). The depths of the wells ranged from about 12.2 to 21.8 mbgs. Table 1 below outlines the monitoring well installation details.

The results of the drilling program indicated that overburden deposits at the Site generally consisted of surficial fill primarily composed of sand with minor gravel and silty sand overlying native deposits of sand to silty sand. Minor deposits of silty clay and silt were also noted in several boreholes. Bedrock was not encountered at any of the borehole locations.

Table 1: Mo	onitoring Wel	l Installation	Details
-------------	---------------	----------------	---------

Borehole ID	Borehole ID Ground Surface Elevation (masl)		Screened Elevations (masl)	Primary Screened Unit
BH23-1	131.1	18.1	115.1 – 113.0	Sand
BH23-2A	130.6	12.2	118.4 – 122.0	Silty Sand
BH23-2B	130.6	21.8	111.4 – 108.8	Silty Sand
BH23-3	131.2	21.2	112.1 – 110.0	Sand
BH23-4	130.6	12.2	122.0 – 118.4	Sand
BH23-5	130.2	12.1	122.7 – 119.1	Sand
BH23-6	130.9	21.4	111.3 – 109.6	Sand
BH23-7	130.5	18.1	115.8 – 112.4	Sand

5.2 Groundwater Level Measurements

Groundwater level measurements were collected at the Site starting in October 2023. Water levels were measured at each location with an electronic water level tape, which was cleaned between well locations. Per the City of Toronto Terms of Reference (TOR), groundwater levels were collected on a bi-weekly (i.e., every two weeks) basis for a period of three months. Table D1 attached, provides all available water level measurements collected to date as part of the current study.

The depth to groundwater at the Site was found to range from approximately 10.14 mbgs to 12.4 mbgs, where the ground surface is defined as the existing parking lot. The water table was found to be situated within the sand and silty sand layers, at elevations ranging from about 118.8 to 120.96 masl. It is expected that the depth to groundwater at the Site will vary both on a seasonal and year-over-year basis. The inferred groundwater flow direction is generally towards the south to southwest towards Lake Ontario and is shown on Figure 5.

Seasonal fluctuation in water levels on the Site should be expected. Given the limited number of monitoring events, seasonal trends could not be identified; however, shallow groundwater levels are typically highest following the spring recharge and decline throughout the summer and fall months into the winter.

5.3 Hydraulic Conductivity

To estimate the hydraulic conductivity of the soils adjacent to the intervals screened by the monitoring wells, single-well response tests were carried out by WSP in all monitoring wells, except BH23-4, which was noted to either be dry or have insufficient column to conduct testing. The tests were carried out by rapidly purging a known volume of water with a dedicated Waterra tube and foot valve and monitoring the subsequent water level recovery.

The data were analyzed using the AQTESOLV for Windows version 4.50 Professional software. The Bouwer-Rice (1976) method for unconfined conditions was used to analyse the single-well response testing data. The single-well response testing AQTESOLV results are provided in Appendix D. The estimated hydraulic conductivity values obtained from the rising head tests are summarized in Table 2 below.

Table 2: Single-Well Response Test Summary

Monitoring Well ID	Screened Interval (masl)	Groundwater Condition	Screened Unit	Est. Hydraulic Conductivity (m/s)
BH23-1	115.1 – 113.0	Unconfined	Sand	2 x 10-6
BH23-2A	122.0 – 118.4	Unconfined	Silty Sand	9 x 10-5
BH23-2B	111.4 – 108.8	Unconfined	Silty Sand	6 x 10-7
BH23-3	112.1 – 110.0	Unconfined	Sand	4 x 10-6
BH23-5	122.0 – 118.4	Unconfined	Sand	1 x 10-5
BH23-6	122.7 – 119.1	Unconfined	Sand	1 x 10-5
BH23-7	111.3 – 109.6	Unconfined	Sand	4 x 10-7

Notes:

masl = metres above sea level m/s = metres per second

The estimated hydraulic conductivity of sand to silty sand layer, ranged from 9×10^{-5} m/s to 4×10^{-7} m/s, with a geometric mean of 4×10^{-6} m/s. The estimated hydraulic conductivities are within the typical range for the above soil type.

5.4 Groundwater Quality

Groundwater quality samples were collected from monitoring well BH23-6 on December 20, 2023 using low-flow sampling techniques, according to standard environmental practices. The samples were stored on ice following collection, and were delivered to Caduceon Laboratories of Richmond Hill, Ontario for analysis of the parameters stipulated under the City of Toronto Municipal Code, Chapter 681 (the 'Guidelines'). The laboratory analytical data sheets are provided in Appendix E.

On October 21, 2024, a groundwater quality sample was collected from BH23-6 using low-flow sampling techniques, according to standard environmental practices. The samples were stored on ice following collection, and were delivered to Bureau Veritas Laboratories of Mississauga, Ontario for analysis of the parameters stipulated under the City of Toronto Municipal Code, Chapter 681 (the 'Guidelines'). The laboratory analytical data sheets are provided in Appendix E.

Based on the sampling results for December 20, 2023, the analytical results indicate that the concentrations of all the analyzed parameters were below their respective Guideline values for both storm and sanitary sewer discharge, with the exception of total manganese [0.074 mg/L] and total suspended solids [TSS; 292 mg/L], each of which were reported at concentrations in excess of the storm sewer discharge guidelines. Elevated TSS concentrations are common for groundwater samples collected from relatively new monitoring wells completed in fine grained material, and the presence of elevated total manganese is assumed to be a consequence of the elevated TSS concentration. It is recommended that a professional dewatering and treatment specialist be consulted to evaluate treatment options (e.g., filtration and/or settling tanks together with contact media treatment using granular activated carbon and/or organoclay) for the noted groundwater quality issues.

Based on the sampling results for October 21, 2024, the analytical results indicate that the concentrations of all the analyzed parameters were below their respective Guideline values for both storm and sanitary sewer discharge. Prior to commencing any temporary construction dewatering activities, the suitability of the water for discharge will need to be confirmed by the contractor. It is recommended that samples be collected from the treatment system and submitted for laboratory analysis prior to commencing the full construction activities. The laboratory results should be provided to a Qualified Professional in order to confirm the discharge water is suitable for release under the applicable guidelines.

5.5 Hydrogeological Summary and Conceptual Site Model

For the purpose of estimating dewatering rates, the subsurface information obtained during the various investigations by WSP was reviewed to develop a conceptual model of the stratigraphic units that are present. The reported elevations of the contacts between the units are summarized in the following Table 4 and were used to approximate the thickness of the units.

Table 3: Conceptual Model Summary

Average Elevation (masl)	Thickness (m)	Hydraulic Conductivity (m/sec)	Description				
131.1 – 125.9	4.1	Not Assessed	"Fill"	Underlying the asphalt pavement, the Site is underlain by silty sand, sand, and gravel fill materials.			
109.0 – 119.5	> 19.5 *(thickness not assessed)	4 x 10-7 to 9 x 10-5	"Sand; Silty Sand Unit"	The fill is underlain by non-cohesive sand and silty sand deposits. The units are grouped together for the purpose of the conceptual model. The unit is considered to be partially saturated and under unconfined conditions.			

The highest groundwater elevation measured in the sand, silty sand to sandy silt unit (i.e., perched water table condition) was at monitoring well BH23-5 on October 21, 2024, at approximately 10.14 mbgs (120.96 masl).

Based on the results of the single-well response testing, the hydraulic conductivity of the sand, silty sand to sandy silt unit is estimated to be in the range of 4 x 10^{-7} m/s to 9 x 10^{-5} m/s. To be conservative, the maximum measured hydraulic conductivity of 9 x 10^{-5} m/s will be assigned to this unit for the dewatering evaluation.

Given the above hydraulic conductivity for the sand; silty sand unit and an assumed saturated thickness of approximately 1.76 m, the sand, silty sand to sandy silt unit was assigned a transmissivity (T = K b) of 13.7 m^2 /day.

6.0 DEWATERING EVALUATION

For the purpose of determining dewatering rates and the zone of influences ("ZOI"), WSP has assumed that dewatering will be carried out as follows;

- WSP understands that building designs are preliminary and that finalized drawings are not available. For the purpose of this report, it is assumed that finished floor elevation will be approximately 124.0 masl, and that underground parking will generally extend building line to building line. The dimensions of the required excavation would be approximately 149 m wide by 38 m long, for an area of 5662 m² and a perimeter length of 374 m; The ground elevation is 131.0 masl.
- The depth to the finished floor elevation will be 7.0 mbgs (about elevation 124.0 masl), with elevator shafts and foundation footings up to 2 m below the finished floor elevation, for a total excavation depth of 9 m (about elevation 122.0 masl); The footings and elevator shafts are proposed to be watertight.
- In order to maintain a dry excavation, the dewatering level will be about 1.0 m below the bottom of the excavation, or approximately 8.0 mbgs (123 masl). The method of construction dewatering is to be solely determined by the Contractor based on their own independent assessment of the Site-specific conditions, and (if necessary) by their specialist dewatering contractor;
- The shallowest depth to groundwater was measured at approximately 10.14 mbgs (120.96 masl) measured in October of 2024. In accordance with the City of Toronto Foundation Drainage Guidelines, the monitoring conducted to date is considered to fall under Option 1 (Flexible, Year-Round). As such, an allowance of 2.8 m has been added to the highest measured groundwater level to account for seasonal fluctuations, for a maximum anticipated water level of 7.34 mbgs (123.76 masl). Based on this, and the excavation depths noted above, the required drawdown during dewatering is expected to be 0.76 m;
- Surface water runoff will be directed away from any open excavation; and,
- Groundwater should be pumped in a manner that prevents loss of ground.

Based on a review of the subsurface conditions and proposed servicing plans, it has been assumed that dewatering of the sand, silty sand and sandy silt deposits will be required to facilitate construction.

6.1 Dewatering Zone of Influence

The dewatering zone of influence (ZOI) represents the lateral extent of groundwater drawdown in response to dewatering. The dewatering ZOI is governed by the transmissivity of the hydrostratigraphic units and the depth of dewatering required. Applying the Theis analytical solution, the lateral extent of groundwater level drawdown can be estimated as follows:

$$s(r,t) = \frac{Q}{4\pi T} W\left(\frac{r^2 S}{4Tt}\right)$$

where s(r, t) = drawdown at distance (r) and time (t) after the start of pumping

Q = pumping rate required to achieve desired drawdown at the source

T = aquifer transmissivity

S = aguifer storativity, and

W = Theis well function.

For the purpose of assessing the potential impacts of dewatering activities on the nearby natural environment and to local structures or services, it is conservatively estimated that seasonal fluctuations in groundwater levels are at least 0.5 m. Therefore, natural systems are expected to be able to tolerate at least a 0.5 m lowering in groundwater levels without an adverse effect. Therefore, the ZOI to a drawdown of 0.5 m is referred to herein as the "effective" ZOI.

Based on Theis analytical approach, the ZOI was estimated for the sand, silty sand to sandy silt unit during construction dewatering (i.e., drawdown of 0.76 m), assuming a transmissivity of 13.7 m²/day; aquifer storativity of 0.1. Accordingly, it is estimated that a drawdown of 0 m will occur at approximately 90 m from the dewatering source area. The effective ZOI was estimated to be approximately 4 m.

6.2 Water Taking Needs

To assess potential temporary dewatering rates for building construction, the steady state dewatering rate was estimated for an excavation 149 m long by 38 m wide, with a drawdown of 0.76 m in the sand, silty sand to sandy silt unit. The modified Jacob's equation was applied using the aquifer parameters and conditions given above:

$$Q = \left[\frac{\pi K (H^2 - h_w^2)}{\ln (R_0 / r_s)} \right] + \left[\frac{x K (H^2 - h^2)}{2L} \right]$$

where:

Q = Dewatering rate (m^3/s)

H = initial groundwater level

h = final groundwater level

K = hydraulic conductivity

x = total perimeter

L = line source distance, ZOI

The steady-state dewatering rate is therefore estimated to be 79 m³/day. To account for potential heterogeneities in the overburden, a two times factor of safety was applied to the steady-state dewatering rate, for an estimated maximum of 158 m³/day

6.2.1 Dewatering Rates for Removal from Storage and Precipitation Events

For short periods of time, higher dewatering rates will be required to remove groundwater from storage, and the ZOI. The volume of groundwater that could be freely released from storage was estimated to be approximately 107 m³, requiring an additional pumping rate of up to 8 m³/day (based on removal over 14 days).

Ontario Regulation 63/16 stipulates that stormwater (i.e., incidental rainfall) is no longer required to be accounted for in the dewatering permitting process for the upper limit of an EASR; however, any incidental precipitation, which does not infiltrate into the base of the excavation, will have to be removed and disposed of as part of the construction activities. Assuming a 30-mm rain event occurred over the excavation area during the high dewatering rate period, an additional pumping rate of 187 m³/day would be required.

6.2.2 Total Construction Dewatering Rate

The following table summarizes the above estimated construction dewatering (short-term) rate. As noted above, a factor of safety of 2.0 has been applied to the steady-state dewatering rates used for permitting and design, to account for potential variability in the hydraulic conductivity of the subsurface units being dewatered.

Dewatering Source	Steady State Groundwater Inflow (Factor of Safety = 2.0) (m3/day)	Removal of Storage (m3/day)	Removal of 30 mm Precipitation Event (m3/day)	Total Construction Dewatering Capacity (m3/day)
Construction Dewatering	158	8	187	353

Table 4: Summary of Total Construction Dewatering Capacity

The sum of the factored steady state groundwater inflow rate, the initial removal of groundwater from storage and the management of incident precipitation is estimated to result in a total construction dewatering rate of 274 m³/day (274,000 L/day) without safety factor; and 353 m³/day (353,000 L/day) with safety factor, which is less than the 400 m³/day threshold for which an EASR is required by the MECP. This finding should be reviewed during the completion of detailed design and the development of construction methods and plans.

6.2.3 Total Long-Term Dewatering Rate

The shallowest depth to groundwater was measured at approximately 10.14 mbgs (120.96 masl) measured in October of 2024. In accordance with the City of Toronto Foundation Drainage Guidelines, an allowance of 2.8 m has been added to the highest measured groundwater level to account for seasonal fluctuations, for a maximum anticipated water level of 7.34 mbgs (123.76 masl). Based on this, the foundation drainage is expected to be 0.16 m below the seasonal high water level (i.e.at the elevation of 123.60 m). A round of groundwater levels is recommended to be collected during May to confirm this assumption. The other option (Option 2) based on the City of Toronto Foundation Drainage Guidelines is to capture a minimum of six static groundwater level measurements, taken every two weeks, within the months of April, May and June.

Applying the modified Jacob's equation and assuming a long-term lowering of 0.16 m in the sand and silty sand unit, the long-term steady state dewatering rate from these units is estimated to be 43 m³/day with a factor of safety of 2.0.

As per the City of Toronto requirement, the basement levels should include a "tanked" design able to withstand hydrostatic pressure and should not include a subgrade/sub-slab drainage system. Therefore, a long-term PTTW for groundwater flow is not anticipated to be required. The need to obtain a long-term sewer discharge permit from the City of Toronto is not anticipated.

7.0 ASSESSMENT OF POTENTIAL EFFECTS OF WATER TAKING

The following section assesses the potential impacts of the proposed water taking program on local groundwater resources, natural heritage features, surface water resources and with respect to existing structures.

7.1 Mobilization of Contaminants

As summarized in Section 5.4, based on the groundwater sampling conducted on December 30, 2023, the groundwater quality results indicate that constituent exceedances were identified in groundwater samples above the applicable criteria. Based on the available sampling results, potential impacts from mobilization of contaminants are expected at the Site during dewatering. The quality of the groundwater pumped during construction dewatering should be monitored for indications of increasing parameter concentrations that could

suggest the mobilization of contaminants. Given the above-stated potential contaminant sources, monitoring of the parameters included in the City Sewer Use By-Law should be adequate to screen for potential issues.

7.2 Groundwater Resources

The MECP Water Well Record database indicates that no water supply wells were identified within 500 m of the Site. This is consistent with the expectation that this urban core area of Toronto is supplied with municipally-sourced potable water. As such, no potential impacts to private water supply wells are expected as a result of the proposed water taking activities.

7.3 Surface Water Resources / Natural Heritage Features

Based on available mapping, Taylor-Massey Creek is located approximately 1.2 km northeast of the Site, The Don River is located approximately 4.9 km west of the Site and Lake Ontario is located approximately 2.5 km south of the Site and are therefore outside of the maximum effective ZOI (i.e.,90 m in the sand, and silty sand unit). Given the effective ZOI (See Section 6.1), the water taking activities are not expected to impact local surface water resources.

7.4 Geotechnical Assessment

As indicated above, the maximum drawdown at the pumping source is anticipated to be approximately 0.8 m. This decreases progressively with distance from the pumping source until reaching the effective ZOI of 4 m. It is anticipated that the dewatering will extend to about 1 m below the proposed foundation depths. As the construction methods and sequencing are not finalized, only preliminary and generalized comments on the potential dewatering impacts on structures can be made at this time. The conceptual stratigraphic model of the site consists of asphalt underlain by fill material, which overlays loose to very dense sand, silty sand to sandy silt and silt and interlayered hard silty clay deposits.

For the purpose of this assessment, the predicted zone of influence due to groundwater dewatering will depend on the depth of excavations, lateral extent (width) of the excavations, the nature of the excavation support (shoring) system used by the contractor and, most importantly, the depths and locations of the dewatering well points in relation to the relevant existing structures. The settlements at various distances from the source of the dewatering are summarized below:

Table 5: Summary of Anticipated Settlement Due to Dewatering

Distance from Pumping Source (m)	Anticipated Drawdown (m)	Increase in Effective Stress (kPa)	Approximate Total Settlement (mm)
1	0.8	8	<10
5	0.5	6	
10	0.3	3	<5
15	0.3	3	/5
20	0.2	2	

Based on the above, the predicted maximum settlements at distances of 5 m or more from the pumping source are within the typical tolerable limits for buildings and infrastructure. Any buildings or infrastructure located closer

than 5 m from the pumping source should be carefully located, monitored and, if necessary, temporarily supported or underpinned during active dewatering. It is recommended that pre-construction condition surveys be conducted on all buildings and infrastructure within 15 m of the pumping source, and that settlement tolerances for any existing settlement-sensitive utilities be confirmed with utility owners.

Geotechnical settlement assessment should be reviewed as the design progresses.

8.0 DISCHARGE PLAN

If the pumped water from the construction dewatering system is discharged to the municipal sewer, a temporary sewer discharge permit from the City will be required. The proposed layout of the construction dewatering, and discharge method should be determined by the Contractor, and likely by their specialist dewatering contractor. Guidance is provided in the sections that follow.

8.1 Discharge Criteria for Total Suspended Solids and Turbidity

The monitoring program (Section 9.0, below) describes the recommended procedures for monitoring the treated dewatering discharge in terms of field turbidity measurements, as well as the collection of total suspended solids (TSS) samples for laboratory analysis. The City Sewer Use By-Law stipulates a TSS limit of 350 mg/L for discharged water to the sanitary sewer and a TSS limit of 15 mg/L for the storm sewer. It is expected that treatment of the water pumped during construction dewatering to remove suspended sediment will be required prior to sewer discharge.

Based on the analytical results for TSS in the groundwater samples collected using a low-flow sampling technique (see Section 5.3), pre-treatment (e.g., settlement/sedimentation and/or filtration) to remove suspended sediment is not expected for groundwater discharged to the sanitary sewer but will likely be needed for groundwater discharged to the storm sewer.

8.2 Discharge Criterion for Temperature

The City Sewer Use By-Law states that the temperature of the discharge to the sanitary sewer can be no greater than 60 degrees Celsius and that the temperature of the discharge to the storm sewer can be no greater than 40 degrees Celsius. These temperatures are not considered a concern as the construction dewatering discharge is not expected to experience any significant heating other than that provided by the ambient air temperature and solar radiation and is not considered to be a concern in the long-term.

9.0 PROPOSED MONITORING, MITIGATION AND CONTINGENCY PLAN

The following section provides a recommended monitoring program for implementation during the operation of the temporary dewatering system. It is recommended that the data from the monitoring program be reviewed by the project hydrogeologist or engineer, and the program modified as appropriate.

9.1 Discharge Water Monitoring

The following construction dewatering monitoring program should be undertaken:

- i) To monitor the discharge rates;
- ii) To confirm that the groundwater discharged from the dewatering system meets the City Sewer Use By-Law; and,
- iii) To respond to any changing conditions, such as discharge water quality non-compliance and spills.

The monitoring program is not intended to supersede any monitoring requirements that the City may impose.

The contractor shall provide measurement controls suitable to measure and record the daily volume of water discharged (e.g., totalizer) and flow rate (e.g., flow meter) to confirm that discharge rates remain below the maximum permitted discharge rate;

- Prior to release of the water from the settling/holding tank to the sanitary or storm sewer, a sample should be collected and compared to the City Sewer Use By-Law. If the sample meets the applicable discharge limits, the water may be discharged to the sewer; if the sample does not meet the applicable discharge limits, the water should be hauled off-Site for disposal;
- Prior to initiating the main dewatering activities at the Site, at least one water quality sample shall be collected of the untreated water quality and at least one water quality sample shall be collected immediately after the Contractor's selected treatment system and submitted for laboratory analysis to confirm compliance with the parameters in the City Sewer Use By-Law. Corresponding measurements for field turbidity, temperature and pH will be manually collected at the same locations at the time of sampling. A Qualified Professional (QP) must review the results of the water quality analyses immediately to decide whether further treatment is required. If no water quality concerns are identified, the monitoring program will include frequent visual assessments, turbidity, temperature, and pH measurements and TSS sampling, with periodic more comprehensive sampling, to confirm compliance with the City Sewer Use By-Law discharge limits as detailed below:
- Storage tanks, or an equivalent measure, should be mobilized to the Site to temporarily contain the effluent generated at the commissioning of the system, pending the results of the initial effluent sampling event to determine whether additional treatment is in fact required;
- The settling tank and, as necessary any additional water treatment measures, should be implemented to control the concentration of TSS in the discharge water such that it remains below the maximum discharge concentration at all times. This will be confirmed with the following monitoring:
 - a. Dewatering effluent shall be sampled on Day 1, Day 3 and then on a weekly basis and analyzed for TSS. If the water is sequestered and discharged intermittently (such as following rain events), the treated effluent will be sampled at least twice during the discharge event, and analyzed for TSS; and
 - b. The turbidity of the dewatering effluent shall be monitored daily (or during intermittent discharge events) with a calibrated field unit, and a written log kept. Turbidity monitoring results are to be correlated with the TSS results from the laboratory and used as a daily indicator that TSS remains below 350 mg/L for water discharged to the sanitary sewer and below 15 mg/L for water discharged to the storm sewer. If the monitoring results indicate TSS is above the applicable discharge limit, additional treatment will be undertaken immediately to reduce TSS concentrations to under the applicable discharge limit. The additional treatment measures could include filtration and/or deployment of a second settling tank allowing longer residency periods for the dewatering effluent;
- Where additional treatment is required, the Contractor shall conduct daily sampling (or during intermittent discharge events) until the efficacy of the treatment is demonstrated. Water will not be permitted to be discharged to the sewer until the quality meets the City Sewer Use By-Law;

Visual inspection of the discharge water shall be conducted at least once daily (or during intermittent discharge events) to ensure there is no visible oil or sheen, and a written log kept. Measurements of field turbidity and pH will be recorded at all discharge location(s) at least once daily (or during intermittent discharge events) to confirm that discharge quality maintains a turbidity level corresponding to ensuring that the concentration is below the required TSS limit, and that pH remains within a range between 6.0 and 11.5 for discharge to the sanitary sewer and between 6.0 and 9.5 for discharge to the storm sewer;

- Additional monitoring of the treated effluent should occur on Day 1, Day 3, then on a weekly basis for six weeks, and then on a monthly basis thereafter. If the discharge events are intermittent, monitoring of the first eight events should occur, followed by a reduced frequency as recommended by the project professional engineer or hydrogeologist. The samples should be analyzed for parameters contained in the City Sewer Use By-Law, or as recommended by the project professional engineer or hydrogeologist based on conditions at that time. Additional sampling events should also be considered whenever significant alterations (if any) are made to the dewatering system over the course of the project; and,
- Based on the water quality monitoring program, the need to maintain the treatment and mobilize any other necessary treatment measures should be evaluated on an on-going basis.

9.2 Groundwater Level Monitoring

If feasible within the Site boundaries, it is recommended that at least three monitoring wells be installed outside of the excavation walls to monitor groundwater elevations. If a dewatering array is to be installed around the excavation perimeter by the specialist dewatering contractor, these monitoring wells should be installed at the same time.

It is recommended that groundwater elevations be monitored in the existing monitoring well network (if accessible) at the Site during construction dewatering as long as possible until decommissioned during building construction activities.

Water levels should be monitored once in the available monitoring wells prior to the commencement of dewatering activities, followed by the selection of representative monitoring wells in which an automatic datalogger can be installed. Starting with the commencement of dewatering activities, groundwater levels are recommended to be monitored weekly for one month, including datalogger downloads. Subsequently, it is recommended that the groundwater levels be monitored and the dataloggers downloaded on a monthly basis, or as recommended by the project professional engineer or hydrogeologist.

10.0 MONITORING WELL DECOMMISSIONING

When no longer required, the monitoring wells installed at the Site should be decommissioned by a MECP-licensed Water Well Contractor in accordance with applicable legislation.

11.0 LIMITATIONS

This report was prepared for First Capital Asset Management LP to accompany development applications to the City of Toronto related to the proposed commercial and residential development at the Site. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the sole responsibility of such third parties. This report is subject to the *Important Information and Limitations of this Report*, as attached in Appendix A, and to any other limitations as stated in the WSP reports prepared for this Site on which this report relies.

WSP has relied in good faith on the data and information provided by First Capital Asset Management LP and others, and on other materials as noted in this report. WSP has assumed that the information provided was factual and accurate. WSP accepts no responsibility for any deficiency, misstatement or inaccuracy contained in this report as a result of omissions, misinterpretations or fraudulent acts of persons interviewed or contacted.

12.0 REFERENCES

Powers, J. (1992). Construction Dewatering: New Methods and Aplications, 2nd edition.

Putnam, & Chapman. (2007). The Physiography of Southern Ontario. Ontario Geological Survey.

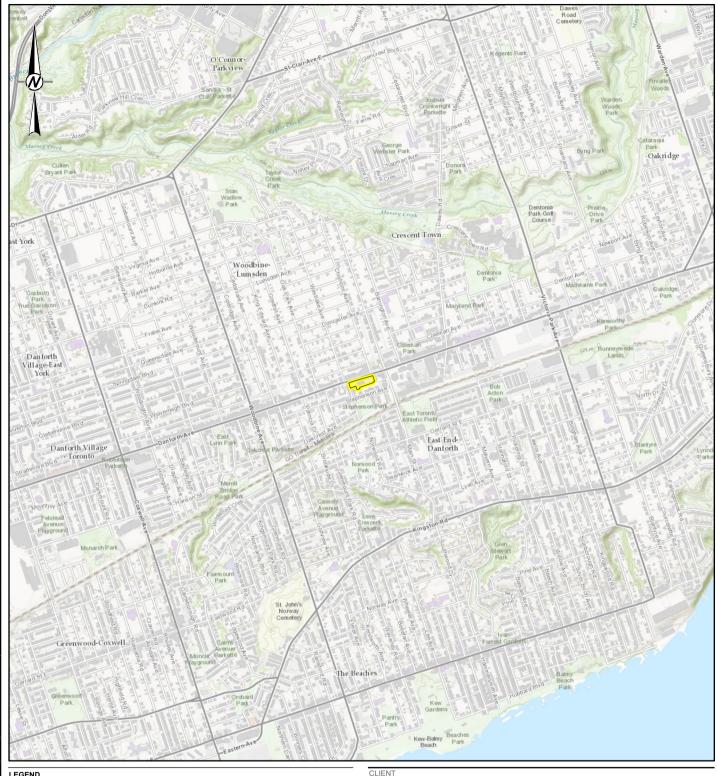
Sharpe, D. (1980). Quaternary Geology of Toronto and the Surrounding Area. Ontario Geological Survey.

Watters Environmental Group Inc. (2013). Phase II Environmental Site Assessment, 2451 Danforth Avenue, Toronto, Ontario.

Signature Page

WSP Canada Inc.

Syed Ali, Ph.D., P.Geo Hydrogeologist


JP/SA/rk/lb

Jan Par

John Piersol, M.Sc., P.Geo *Principal Hydrogeologist*

https://wsponline.sharepoint.com/sites/gld-165095/project files/6 deliverables/hydrog/22535291-r-rev0-fcam 2451 danforth hydrog-08nov2024.docx

Figures

SITE BOUNDARY

FIRST CAPITAL ASSET MANAGEMENT LP

GEOTECHNICAL AND HYDROGEOLOGICICAL EXPLORATION 2451-2495 DANFORTH AVENUE, TORONTO, ONTARIO

TITLE

1,000

METRES

500

KEY PLAN

CONSULTANT		YYYY-MM-DD	2024-02-09	
		DESIGNED		
	\ \$1)	PREPARED	JT / JPR	
•		REVIEWED	SAA	
		APPROVED		
PROJECT NO.	CONTROL	RE	V.	FIGURE
22535291	0003	A	4	1

1. BASE MAP: YORK UNIVERSITY, CITY OF BRAMPTON, CITY OF TORONTO, REGION OF DURHAM, PROVINCE OF ONTARIO, ONTARIO MNR, ESRI CANADA, ESRI, HERE, GARMIN, INCREMENT P, USGS, METINASA, EPA, USDA, AAFC, NRCAN
2. PROJECTION: NAD 1983 UTM ZONE 17N, TRANSVERSE MERCATOR

1:25,000

PLAN LEGEND

— - - DEVELOPMENT BOUNDARY

MONITORING WELL

REFERENCES & DISCLAIMERS

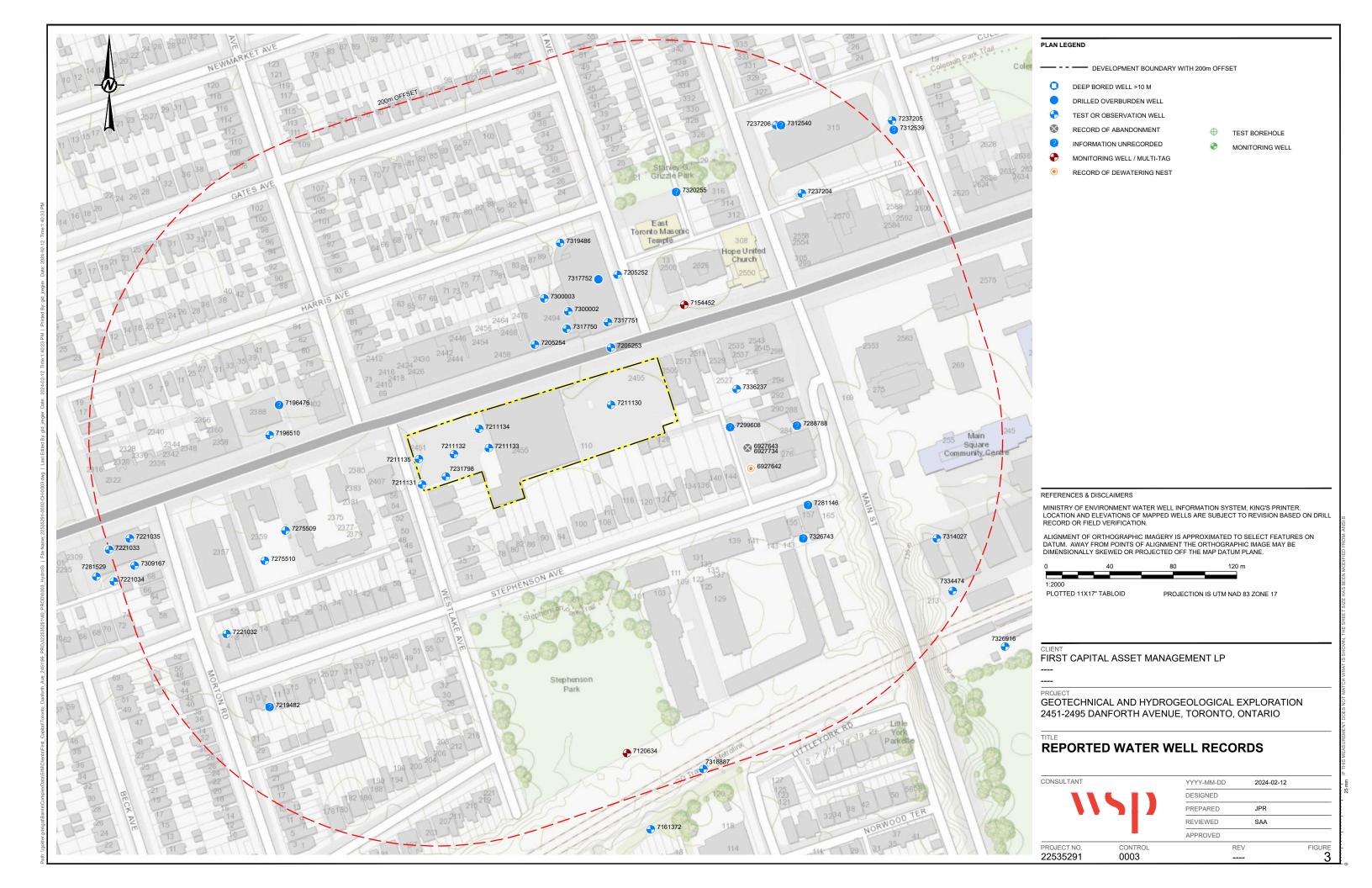
MINISTRY OF ENVIRONMENT WATER WELL INFORMATION SYSTEM, KING'S PRINTER. LOCATION AND ELEVATIONS OF MAPPED WELLS ARE SUBJECT TO REVISION BASED ON DRILL RECORD OR FIELD VERIFICATION.

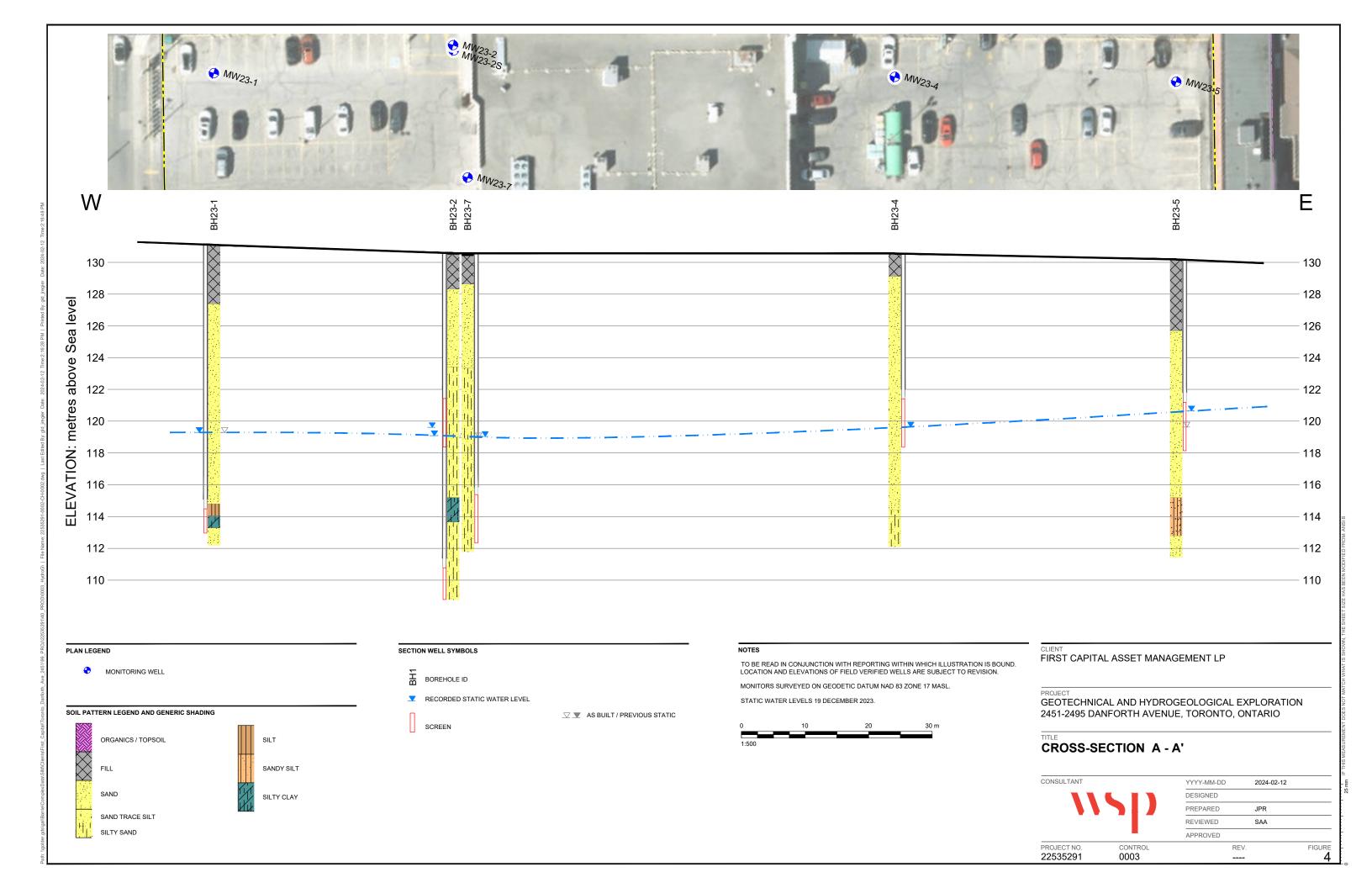
ALIGNMENT OF ORTHOGRAPHIC IMAGERY IS APPROXIMATED TO SELECT FEATURES ON DATUM. AWAY FROM POINTS OF ALIGNMENT THE ORTHOGRAPHIC IMAGE MAY BE DIMENSIONALLY SKEWED OR PROJECTED OFF THE MAP DATUM PLANE.

PLOTTED 11X17" TABLOID

PROJECTION IS UTM NAD 83 ZONE 17

FIRST CAPITAL ASSET MANAGEMENT LP


PROJECT
GEOTECHNICAL AND HYDROGEOLOGICAL EXPLORATION
2451-2495 DANFORTH AVENUE, TORONTO, ONTARIO


SITE PLAN

CONSULTANT

YYYY-MM-DD	2024-02-12
DESIGNED	XXX
PREPARED	XXX
REVIEWED	XXX
APPROVED	XXX

FIGURE 2 PROJECT NO. REV. 22535291 0003

— - - DEVELOPMENT BOUNDARY

MONITORING WELL

119.35 STATIC WATER LEVEL ELEVATION (masl)

---- INTERPOLATED GROUNDWATER CONTOUR (masl) ■ INFERRED DIRECTION OF GROUNDWATER FLOW

REFERENCES & DISCLAIMERS

WATER LEVEL MONITORING 19 DECEMBER 2023.
INTERPOLATION USES HIGHEST POTENTIAL AT NESTED MONITORS.
LEVEL IN BRACKETS () STATIC WATER LEVEL FROM LOWER SCREEN AT NESTED MONITOR.

ALIGNMENT OF ORTHOGRAPHIC IMAGERY IS APPROXIMATED TO SELECT FEATURES ON DATUM. AWAY FROM POINTS OF ALIGNMENT THE ORTHOGRAPHIC IMAGE MAY BE DIMENSIONALLY SKEWED OR PROJECTED OFF THE MAP DATUM PLANE.

PLOTTED 11X17" TABLOID

PROJECTION IS UTM NAD 83 ZONE 17

FIRST CAPITAL ASSET MANAGEMENT LP

GEOTECHNICAL AND HYDROGEOLOGICAL EXPLORATION 2451-2495 DANFORTH AVENUE, TORONTO, ONTARIO

22535291

GROUNDWATER FLOW

CONSULTANT PROJECT NO.

0003

YYYY-MM-DD 2024-02-12 DESIGNED PREPARED REVIEWED XXX APPROVED XXX FIGURE 5 REV.

APPENDIX A

Important Information and Limitations of This Report

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: WSP Canada Inc. (WSP) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to WSP by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. WSP cannot be responsible for use of this report, or portions thereof, unless WSP is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without WSP's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, WSP may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to WSP. The report, all plans, data, drawings and other documents as well as all electronic media prepared by WSP are considered its professional work product and shall remain the copyright property of WSP, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make available the report or any portion thereof to any other party without the express written permission of WSP. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of WSP's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to WSP by the Client, communications between WSP and the Client, and to any other reports prepared by WSP for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. WSP can not be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

Soil, Rock and Ground Water Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, WSP does not warrant or guarantee the exactness of the descriptions.

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that WSP interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

Sample Disposal: WSP will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

Follow-Up and Construction Services: All details of the design were not known at the time of submission of WSP's report. WSP should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of WSP's report.

During construction, WSP should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of WSP's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in WSP's report. Adequate field review, observation and testing during construction are necessary for WSP to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, WSP's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

APPENDIX B

MECP Water Well Records

LABEL CON		EASTING	ELEV		SCR TOP LEN	SWL RATE	TIME	PL DRILLER		WELL NAME
LOT	mmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl L/min	min	mbgl METHOD	STAT	DESCRIPTION OF MATERIALS
6927642	Jan-04	636835	79.2	11.9 -	17.7 -3.4	12.2		1413	DW	MOE# 6927642
		4838529						RC	NU	0.0 BRWN SAND PCKD 12.2 BRWN FSND 18.3 BRWN
										FSND PCKD 21.0
6927643	Jan-04	636833	NR			NR		1413	-	MOE# 6927643 TAG#A003784
		4838542						-	-	0.0
6927734	Mar-04	636833	79.2			NR		6875	AB	MOE# 6927734 TAG#A003784
		4838542						-	NU	0.0
7120634	Jan-09	636757	131.7			NR		6607	TH	MOE# 7120634 TAG#A081338
		4838350						-	MO	0.0 BRWN SAND SOFT 10.7 GREY SAND SOFT 15.2
7154452	May-10	636793	129.8		28.0 -10.1	NR		6809	TH	MOE# 7154452 TAG#A100807
		4838632						-	TH	0.0 BRWN SAND DRY 31.1 BRWN SAND WBRG 38.1
7161372	Mar-11	636772	129.8		6.1 -3.0	NR		7241	OW	MOE# 7161372 TAG#A075585
		4838302						DP	TH	0.0 BRWN SAND WBRG 9.1
7196476	Oct-12	636538	131.7			NR		6032	-	MOE# 7196476 TAG#A102091
		4838569						-	-	0.0
7196510	Sep-12	636532	131.4	11.9 Un	10.7 -3.0	NR		6032	OW	MOE# 7196510 TAG#A102901
		4838550						BR	-	0.0 BRWN SAND LOOS 1.8 BRWN SAND DNSE 13.7
7205252	Jun-13	636751	129.8		3.4 -3.0	NR		7241	TH	MOE# 7205252 TAG#A150579
		4838651						DP	-	0.0 BRWN SAND GRVL FILL 0.3 BRWN CSND LOOS
										4.3 BRWN CSND DNSE 6.4
7205253	Jun-13	636747	129.8		3.0 -3.0	NR		7241	TH	MOE# 7205253 TAG#A146629
		4838605						DP	-	0.0 BRWN FILL LOOS 0.3 BRWN SAND 5.8
7205254	Jun-13	636699	130.1		9.1 -3.0	NR		7241	-	MOE# 7205254 TAG#A116713
		4838607						DP	-	0.0 BLCK 0.9 BRWN SAND 12.2
7211130	Sep-13	636747	130.1	9.1 Un	12.2 -3.0	NR		7472	OW	MOE# 7211130 TAG#A155404
	·	4838569						BR	MO	0.0 BRWN FILL SAND LOOS 1.5 BRWN SAND PCKD
										8.8 GREY SAND PCKD 15.2
7211131	Sep-13	636628	130.1	9.1 Un	15.2 -3.0	NR		7472	OW	MOE# 7211131 TAG#A155403
	·	4838519						BR	MO	0.0 BRWN FILL SAND LOOS 1.5 BRWN SAND PCKD
										8.8 GREY SAND PCKD 18.3
7211132	Sep-13	636648	129.8	9.1 Un	12.2 -3.0	NR		7472	OW	MOE# 7211132 TAG#A155402
		4838538						BR	МО	0.0 BRWN FILL SAND LOOS 1.5 BRWN SAND PCKD
										8.8 GREY SAND PCKD 15.2
7211133	Sep-13	636670	129.8	9.1 Un	12.2 -3.0	NR		7472	OW	MOE# 7211133 TAG#A155401
		4838542						BR	МО	0.0 BRWN FILL SAND LOOS 1.5 BRWN SAND PCKD
										8.8 GREY SAND PCKD 15.2
7211134	Sep-13	636664	129.8	9.1 Un	12.2 -3.0	NR		7472	OW	MOE# 7211134 TAG#A155400
	17	4838554		-				BR	MO	0.0 BRWN FILL SAND LOOS 1.5 BRWN SAND PCKD
									-	8.8 GREY SAND PCKD 15.2
7211135	Sep-13	636626	130.1	9.1 Un	12.2 -3.0	NR		7472	OW	MOE# 7211135 TAG#A155399
		4838535						BR	MO	0.0 BRWN SAND FILL SILT 1.5 BRWN SAND PCKD
										8.8 GREY SAND PCKD 15.2
7219482	Oct-13	636532	130.5			NR		7215	-	MOE# 7219482 TAG#A155136
		4838379						-	_	0.0
		.030373								0.0

LABEL CON	DATE	EASTING	ELEV	WTR FND	SCR TOP LEN	SWL	RATE	TIME	PL DRILLER	TYPE	WELL NAME
LOT	mmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min	mbgl METHOD	STAT	DESCRIPTION OF MATERIALS
7221032	Apr-14	636505	130.1		9.4 -3.0	NR			7241	TH	MOE# 7221032 TAG#A160887
		4838425							DP	TH	0.0 GREY GRVL GRVL 0.9 BRWN SAND SAND LOOS
											10.1 BRWN SAND SILT 12.5
7221033	Apr-14	636431	130.8		10.1 -3.0	NR			7241	TH	MOE# 7221033 TAG#A160974
		4838478							DP	TH	0.0 GREY 0.3 BRWN FILL SAND 1.8 BRWN SAND
											10.1 BRWN SAND WBRG 13.1
7221034	Apr-14	636434	130.5		9.4 -3.0	NR			7241	TH	MOE# 7221034 TAG#A162958
		4838458							DP	TH	0.0 BLCK 1.2 BRWN FILL SAND 1.8 BRWN SAND
											9.4 BRWN SAND WBRG 12.5
7221035	Apr-14	636444	130.8		10.1 -3.0	NR			7241	TH	MOE# 7221035 TAG#A162938
		4838485							DP	TH	0.0 GREY 1.5 BRWN FILL SAND 1.8 BRWN SAND
											SILT 10.7 BRWN SAND WBRG 13.1
7231798	Sep-14	636643	130.1		2.4 -1.5	NR			6032	OW	MOE# 7231798 TAG#A138149
		4838524							BR	MO	0.0 GREY SAND GRVL LOOS 0.6 BRWN SAND SILT
											DRY 1.8 BRWN SAND DNSE 3.7
7237204	Nov-14	636867	129.8		0.9 -0.9	NR			7472	OW	MOE# 7237204 TAG#A168459
		4838702							BR	MO	0.0 BRWN FSND LOOS 1.8
7237205	Nov-14	636924	129.5		3.0 -3.0	NR			7472	OW	MOE# 7237205 TAG#A168458
		4838748							BR	MO	0.0 BRWN FSND LOOS 6.1
7237206	Nov-14	636851	129.2		3.0 -3.0	NR			7472	OW	MOE# 7237206 TAG#A168460
		4838745							BR	MO	0.0 BRWN FSND LOOS 6.1
7275509	Oct-16	636542	130.1		10.7 -3.0	NR			1663	OW	MOE# 7275509 TAG#A213011
		4838490							RC	МО	0.0
7275510	Nov-16	636529	130.1		12.8 -5.2	12.5	36	180	14.6 1663	TH	MOE# 7275510 TAG#A213012
		4838471							RC	TH	0.0
7281146	Feb-17	636871	130.1			NR			7238	-	MOE# 7281146 TAG#A175263
		4838506							-	-	0.0
7281529	Jan-16	636423	130.5	7.0 Un	16.8 -3.0	NR			6032	OW	MOE# 7281529 TAG#A194304
		4838461							BR	МО	0.0 BLCK FILL LOOS 0.9 BRWN CLAY SILT DNSE
											4.6 GREY CLAY SILT DNSE 19.8
7288788	Feb-17	636864	129.8			NR			7230	_	MOE# 7288788 TAG#A220801
		4838556							_	-	0.0
7299608	Sep-17	636822	129.8			NR			7464	_	MOE# 7299608 TAG#A224815
		4838555							_	-	0.0
7300002	Oct-17	636720	130.1	11.9 Un	9.1 -3.0	NR			7383	TH	MOE# 7300002 TAG#A238937
		4838628							RC	TH	
											DNSE 12.2
7300003	Oct-17	636705	130.1	11.6 Un	9.1 -3.0	NR			7383	TH	MOE# 7300003 TAG#A238936
	- -	4838636							RC	TH	0.0 BRWN SAND SILT DNSE 12.2
7309167	Nov-16	636447	NR		16.2 0.0	NR			6032	OW	MOE# 7309167 TAG#A202467
. 303107	.,,,,	4838468	1411		10.2 0.0	1411			RC	MO	0.0 BRWN SAND GRVL DNSE 1.2 BRWN SAND SILT
		1030-100							i.c	.,,,	DNSE 12.8 BRWN SAND DNSE 14.6 BRWN SAND SILT
											16.2
7312539	May-18	636925	NR	4.3 Un		NR			7215	_	MOE# 7312539 TAG#A168458
,312333	IVIUY-10	030323	1411	7.5 011		INIX			/213	-	MOFIL 1215222 I VOLUTOOA20

LABEL CON	DATE	EASTING	ELEV	WTR FND	SCR TOP LEN	SWL	RATE	TIME	PL	DRILLER	TYPE	WELL NAME
LOT	mmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min	mbgl	METHOD	STAT	DESCRIPTION OF MATERIALS
		4838742								-	-	0.0
7312540	May-18	636854	NR	4.6 Un		NR				7215	-	MOE# 7312540 TAG#A168460
		4838745								-	-	0.0
7314027	Jan-18	636952	NR		10.7 -3.0	NR				7383	-	MOE# 7314027 TAG#A239007
		4838485								BR	TH	0.0 SAND 13.7
7317750	Oct-17	636719	NR		8.8 -3.0	NR				6571	OW	MOE# 7317750 TAG#A207367
		4838617								RC	-	0.0 WSTE 0.3 SAND GRVL FILL 1.5 SAND 13.7
7317751	Oct-17	636745	NR		8.8 -3.0	NR				6571	OW	MOE# 7317751 TAG#A207368
		4838621								RC	-	0.0 WSTE 0.3 FILL 3.7 MSND 13.1
7317752	Oct-17	636739	NR		8.8 -3.0	NR				6571	-	MOE# 7317752 TAG#A207369
		4838648								RC	-	0.0 WSTE 0.3 FILL 3.0 FSND 13.1
7318887	Jun-18	636805	NR		9.1 -3.0	NR				6607	OW	MOE# 7318887 TAG#A241278
		4838340								BR	MO	0.0 BRWN SAND 12.2
7319486	Oct-17	636715	NR	10.7 Un	8.8 -3.0	NR				7383	-	MOE# 7319486 TAG#A230286
		4838671								BR	TH	0.0 SAND 11.9
7320255	Jun-18	636788	NR			NR				7531	-	MOE# 7320255 TAG#A248767
		4838703								-	-	0.0
7326743	Dec-18	636868	NR			NR				7464	-	MOE# 7326743 TAG#A238674
		4838485								-	-	0.0
7334474	Nov-18	636962	NR	10.1 Un	8.5 -3.0	NR				6032	OW	MOE# 7334474 TAG#A244487
		4838452								BR	TH	0.0 BRWN SAND 0.9 BRWN SAND 11.6
7336237	Feb-19	636826	NR			NR				6607	TH	MOE# 7336237 TAG#A217760
		4838579								BR	MO	0.0

	QUALITY:		TYPE:		USE:			M	ETHOD :
Fr	Fresh	WS	Water Supply	CO	Comercial	NU	Not Used	CT	Cable Tool
Mn	Mineral	AQ	Abandoned Quality	DO	Domestic	IR	Irrigation	JT	Jetting
Sa	Salty	AS	Abandoned Supply	MU	Municipal	AL	Alteration	RC	Rotary Conventional
Su	Sulphur	AB	Abandonment Record	PU	Public	MO	Monitoring	RA	Rotary Air
	Unrecorded	TH	Test Hole or Observation	ST	Stock	-	Not Recorded	BR	Boring

Easting and Northings UTM NAD 83 Zone 17, Translated from Recorded UTM NAD, subject to Field Verified Location or Improved Location Accuracy.

Records Copyright Ministry of Environment Queen's Printer. Selected information tabulated to metric with changes and corrections subject to Driller's Records.

APPENDIX C

Borehole Logs

PROJECT: 22535291

RECORD OF BOREHOLE: BH23-1

SHEET 1 OF 3

LOCATION: N 4838546.34; E 636627.76

BORING DATE: September 11, 2023

DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

DRILL RIG: Diedrichl D-20 Track Mount

HAMMER TYPE: AUTOMATIC

DONING MIE I	GROUND SURFACE (ASPHALT (~50 mm) thick FILL - (SP) gravelly SAND, trace fines; light brown; non-cohesive, moist, very loose to compact	STRATA PLOT	ELEV. DEPTH (m) 131.10 8:88	1	% % TYPE		D⊕ ND	ORGANIC TIONS [PF	00 40 VAPOUF PM] 00 40	00	10 ⁶ WATI Wp H 10	10°5 ER CONTE		10°3	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION 50 mm Dia. Monitoring Well
á	ASPHALT (~50 mm) thick FILL - (SP) gravelly SAND, trace fines; light brown; non-cohesive, moist, very	STF	131.10	1	-	13 [100		00 40		10				<u> </u>	
	ASPHALT (~50 mm) thick FILL - (SP) gravelly SAND, trace fines; light brown; non-cohesive, moist, very		131.10 8:89	1	-		ND			(D			+-		50 mm Dia. Monitoring Well
	FILL - (SP) gravelly SAND, trace fines; light brown; non-cohesive, moist, very		t:d₹	1	-		ND			(50 mm Dia. Monitoring Well
				2	SS	12 [
					-		D⊕ ND			(
		\otimes		3	SS	5 [I⊕ ND			·	0					
ΙI				4	SS	2 [T⊕ ND			(
	(00) 041/10		127.37	5	ss	3 [I⊕ ND			C						
	(SP) SAND, some fines; light brown to brown, non-cohesive, moist, loose to very dense		3./3	6	ss	21 [I⊕ ND				0					
200 mm O.D. Hollow Stem Auger				7	SS	33 [SD ND			Ó						Bentonite
				8	SS.	28 [D⊕ ` <i>ND</i>				0					
				9	SS	40 [⊞ ND				0				мн	
				10	ss	56 [□ ⊕ ND				0					
	CONTINUED NEXT PAGE															
		200 nm O.D. Hollow Stem Auger	very dense	(SP) SAND, some fines; light brown to brown; non-cohesive, moist, loose to very dense	very dense 6 7 7 8 8 8 10 10	(SP) SAND, some fines; light brown to brown; non-cohesive, moist, loose to very dense 7 SS 8 SS. CONTINUED NEXT PAGE	(SP) SAND, some fines; light brown to brown; non-cohesive, moist, loose to very dense 7 SS 33 [8 SS- 28 [CONTINUED NEXT PAGE	(SP) SAND, some fines; light brown to brown; non-cohesive, moist, loose to very dense SS 21 BB ND	(SP) SAND, some fines; light brown to brown; non-cohesive, moist, loose to very dense 127.37 3.73 6 SS 21 TB ND 7 SS 33 TB ND 9 SS 40 TB ND 10 SS 56 T PA	(SP) SAND, some fines; light brown to brown; non-cohesive, moist, loose to very dense 127.37	(SP) SAND, some fines; light brown to brown; non-cohesive, moist, loose to very dense 127.37 3.73	(SP) SAND, some fines; light brown to brown; non-cohesive, moist, loose to very dense 127.37	(SP) SAND, some fines; light brown to brown; non-cohesive, moist, loose to very dense 7 SS 33 BB AND 9 SS 40 EB AND CONTINUED NEXT PAGE	(SP) SAND, some fines; light brown to brown, non-cohesive, moist, loose to very dense 7 SS 33 BB ND 9 SS 40 TB ND CONTINUED NEXT PAGE	(SP) SAND, some fines; light brown to brown, non-cohesive, moist, loose to very derise 10	(SP) SAND, some fines: light brown to brown, non-cohesive, moist, loose to very dense 6 SS 21 DB AND 7 SS 33 BB AND 0 SS 40 DB AND 10 SS 56 D \u00dcm CONTINUED NEXT PAGE

PROJECT: 22535291

RECORD OF BOREHOLE: BH23-1

SHEET 2 OF 3

LOCATION: N 4838546.34; E 636627.76

BORING DATE: September 11, 2023

DATUM: Geodetic

DRILL RIG: Diedrichl D-20 Track Mount

HAMMER TYPE: AUTOMATIC

» ALE	THOD	SOIL PROFILE	Τ⊢		AM	PLES	HEADSPACE C VAPOUR CONG ND = Not Detect 100 20	CENTRATIONS [PPM] ⊕		k, cm/s	JCTIVITY,	NG P	PIEZOMETER
DEP IN SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	TYPE	BLOWS/0.3m	HEADSPACE O CONCENTRATI	RGANIC VAPOUI		W		10 ⁴ 10 ³ NT PERCENT W	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
_	BC		STE	(m) ²	_	BL	100 20		00		0 20	30 40		
10		CONTINUED FROM PREVIOUS PAGE (SP) SAND, some fines; light brown to	, in the		+	+						++-		
		brown; non-cohesive, moist, loose to very dense												
11				1	1 S	S 81	ED ND			0				∇
12				1		S 32	₽				0			<u>⊻</u> Jan. 10, 2024
- 13							ND							Bentonite
14	Track Mount ow Stem Auger			1	3 S	S 48	Œ⊕ ND				0			
15	Diedrich D-20 Track Mount 200 mm O.D. Hollow Stem Auger													
				1	4 S	S 6	Œ⊕ ND				0			
16		(ML) SILT, some sand to sandy, slight plasticity; brown; non-cohesive, moist, compact		114.79 16.31										Sand
17		(CL) SILTY CLAY, trace sand; grey; cohesive, w <pl, stiff<="" td="" very=""><td></td><td>114.03 17.07</td><td>- s</td><td>\$ 29</td><td>D⊕ ND</td><td></td><td></td><td></td><td>0</td><td></td><td>мн</td><td>Screen</td></pl,>		114.03 17.07	- s	\$ 29	D⊕ ND				0		мн	Screen
- 18		(SP) SAND; brown; non-cohesive, moist, compact		113.27 17.83										
- 19		END OF BOREHOLE		1 112.20 18.90	6 S	S 23					0			
- 20		CONTINUED NEXT PAGE			+									
		CALE	1				1115		1				•	OGGED: BN

RECORD OF BOREHOLE: BH23-1

SHEET 3 OF 3

LOCATION: N 4838546.34; E 636627.76

BORING DATE: September 11, 2023

DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

DRILL RIG: Diedrichl D-20 Track Mount

	Щ	ДОР	SOIL PROFILE			SA	MPL	.ES	HEADSPACE CO VAPOUR CONCI	MBUST ENTRAT	IBLE IONS [PF	РМ] ⊕	HYDRA	NULIC CO	ONDUCT	ΓΙVΙΤΥ,	T	_G	PIEZOMETER
20 — CONTINUED PROVIDED PROVID	DEPTH SCALE METRES	ING METI	DESCRIPTION	TA PLOT		MBER	YPE	NS/0.3m	ND = Not Detected 100 200 HEADSPACE OR	GANIC \	0 400 /APOUR)	W	ATER CO	ONTENT	PERCE	NT	DDITIONA 3. TESTIN	OR STANDPIPE
30 NOTE: 1 Considerative level measurements in monitoring yell as follows: Date Deptin	DE	BORI		STRA	(m)	ĺΝ	Ĺ	BLOV					1					A P	
1.	- 20																		
20			Groundwater level measurements in																
24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			I -																
22 196-0e-23 1194 1193 20 1195 1195 20 1195 1195 20 11	21		24-Oct-23 11.66 119.44 26-Oct-23 11.73 119.37																
22 23 24 25 26 27 28 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20			06Dec-23 11.94 119.16 19-Dec-23 11.81 119.30																
22																			
22																			
	22																		
	23																		
	24																		
27 28 29 30	25																		
27 28 29 30																			
27 28 29 30																			
28 29 30	26																		
28 29 30																			
28 29 30																			
29	27																		
29																			
29																			
29	28																		
30	20																		
30																			
30																			
	29																		
DEPTH SCALE LOGGED: BN	30																		
DEPTH SCALE LOGGED: BN																			
1:50 CHECKED: AD			SCALE						115	1)									

RECORD OF BOREHOLE: BH23-2

SHEET 1 OF 3

LOCATION: N 4838561.49; E 63666244.00

BORING DATE: September 12, 2023

DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

DRILL RIG: Diedrichl D-20 Track Mount

SOL PROPER SAMPLES HEADSPACE CONDUCTATIVE Form F
GROUND SURFACE 190.92
GROUND SURFACE 190.92
GROUND SURFACE 133.32
SSPHALT (-100 mm) brick
ELL-CMM SLTY SAND, some grave brown; concodesive, moist, very lose bo compact to compact
Second
2 SS 3 din NO 3 SS 2 din NO (SP) SAND, some fines; brown; 129 29 129 29 4 SS 8 din NO 5 SS 22 din NO 6 SS 22 din NO 7 SS 22 din NO 0 MA 129 49 17 10 SS 22 din NO 0 MA 17 10 MA 17 10 din No 18 10
2 SS 3 Mo
2 SS 3 M/D 3 SS 2 Q M/D (SP) SAND, some fines; brown: non-cortesive, molat, loose to very dense 6 SS 22 Q M/D 7 SS 22 Q M/D 7 SS 22 Q M/D 0 M/D 129.31 8 SS 52 Q M/D 0 M/D 129.31 18 SS 52 Q M/D 0 M/D 18 SS 52 Q M/D 0 M/D 19 SS 22 Q M/D 0 M/D 10 SS SS 22 Q M/D 0 M/D 10 SS SS 22 Q M/D 10 SS SS SS
(SP) SAND, some fines; brown: 128.30 128.30 4 SS 22 @ ND 6 SS 22 @ ND 7 SS 22 @ ND 0 173.41 (SMSP) SILTY SAND to SAND, brown: 173.41
Second
Second
Second Common Contestive, moist, loose to very dense Second Common Contestive, moist loose Second Contestive
(SP) SAND, some fines; brown; non-cohesive, moist, loose to very dense 5 SS 22 60 ND 7 SS 29 60 ND 7 SS 29 60 ND (SM/SP) SILTY SAND to SAND; brown; non-cohesive, moist to wet, loose to very dense
The pay of the state of the sta
SM/SP) SILTY SAND to SAND; brown; non-cohesive, moist to wet, loose to very dense
SM/SP) SILTY SAND to SAND; brown; non-cohesive, moist to wet, loose to very dense
SS 22 GB ND O O O O O O O O O
The first of the f
6 SS 29 63 ND 7 SS 29 63 ND 7 SS 29 63 ND (SM/SP) SILTY SAND to SAND; brown; non-cohesive, moist to wet, loose to very dense
(SM/SP) SILTY SAND to SAND; brown; non-cohesive, moist to wet, loose to very dense
(SM/SP) SILTY SAND to SAND; brown; non-cohesive, moist to wet, loose to very dense
To see 10 to
8 SS 52 © ND (SM/SP) SILTY SAND to SAND; brown; non-cohesive, moist to wet, loose to very dense
8 SS 52 © ND (SM/SP) SILTY SAND to SAND; brown; non-cohesive, moist to wet, loose to very dense
8 SS 52 © ND (SM/SP) SILTY SAND to SAND; brown; 7.16 non-cohesive, moist to wet, loose to very dense
8 SS 52 © ND (SM/SP) SILTY SAND to SAND; brown; non-cohesive, moist to wet, loose to very dense
8 SS 52 © ND (SM/SP) SILTY SAND to SAND; brown; non-cohesive, moist to wet, loose to very dense
8 SS 52 © ND (SM/SP) SILTY SAND to SAND; brown; non-cohesive, moist to wet, loose to very dense
(SM/SP) SILTY SAND to SAND; brown; 7.16 non-cohesive, moist to wet, loose to very dense
(SM/SP) SILTY SAND to SAND; brown; non-cohesive, moist to wet, loose to very dense
(SM/SP) SILTY SAND to SAND; brown; non-cohesive, moist to wet, loose to very dense
(SM/SP) SILTY SAND to SAND; brown; 7.16 non-cohesive, moist to wet, loose to very dense
(SM/SP) SILTY SAND to SAND; brown; 7.16 non-cohesive, moist to wet, loose to very dense
(SM/SP) SILTY SAND to SAND; brown; non-cohesive, moist to wet, loose to very dense
non-cohesive, moist to wet, loose to very dense
3 9 SS 60 @ ND O O O O O O O O O
[;*];
·├└├ ╩ネ├┼┤-├-┼├-┼├-┼├-┼├-┼
CONTINUED NEXT PAGE
EPTH SCALE LOGGED: BN
:50 CHECKED: AD

RECORD OF BOREHOLE: BH23-2

SHEET 2 OF 3

LOCATION: N 4838561.49; E 63666244.00

BORING DATE: September 12, 2023

DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

DRILL RIG: Diedrichl D-20 Track Mount

		SOIL PROFILE			SA	MPLE	_	HEADSPACE (VAPOUR CON	CENTRA	TIBLE ATIONS [PPM] ⊕	HYDRAULIC COND k, cm/s	UCTIVITY,	_ [출广	PIEZON	METER
METRES	BORING METHOD		STRATA PLOT	ELEV.	H	ш l	0.3m	ND = Not Detection 100 2			00	10 ⁻⁶ 10 ⁻⁵	10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	O STANI	R
¥ ₹	NING 	DESCRIPTION	SATA!	DEPTH	NUMBER	TYPE	BLOWS/0.3m	HEADSPACE C CONCENTRAT ND = Not Detect	RGANIC IONS [PF	VAPOUI PM]	₹ □	WATER CONTE		ADDI7 AB. T	INSTALI	
1	ы		STF	(m)	_		BL			00 4	00	10 20	30 40			
10	\dashv	CONTINUED FROM PREVIOUS PAGE (SM/SP) SILTY SAND to SAND: brown:	.71												23-2 (S)	23-2
11 12 13 14	Auger	(SM/SP) SILTY SAND to SAND; brown; non-cohesive, moist to wet, loose to very dense			12	SS	10	ND				0		мн		□
91 Diedrich D-20 Track Mount	200 mm O.D. Hollow Stem Auger	(CL) SILTY CLAY, trace sand; brown to grey; cohesive, w~PL, hard		115.18 15.39				Đ ND				0 0				
17		(SM) SILTY SAND; brown; non-cohesive, moist to wet, very dense		16 94	15A 15B	ss (89/ 0.25	BB ND								
19					16	SS	75	3 ND				•				r,xr,xr,xr,xr,x
\perp		CONTINUED NEXT PAGE														
DEPT	TH S	CALE						1119	11					LO	OGGED: BN	

RECORD OF BOREHOLE: **BH23-2**

SHEET 3 OF 3

DATUM: Geodetic

LOCATION: N 4838561.49; E 63666244.00

BORING DATE: September 12, 2023

DRILL RIG: Diedrichl D-20 Track Mount SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm HAMMER TYPE: AUTOMATIC HEADSPACE COMBUSTIBLE
VAPOUR CONCENTRATIONS [PPM] ⊕
ND = Not Detected
100 200 300 400 HYDRAULIC CONDUCTIVITY, SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ 10⁻⁴ 10⁻³ BLOWS/0.3m NUMBER TYPE STANDPIPE ELEV. HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM] WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH **-**0W Wp -- WI ND = Not Detected (m) 20 23-2 (S) 23-2 (D) --- CONTINUED FROM PREVIOUS PAGE ---20 (SM) SILTY SAND; brown; non-cohesive, moist to wet, very dense Diedrich D-20 Track Mount 21 ss | 88/400 0.28 | ND 200 17 END OF BOREHOLE 22 NOTES: 1. Groundwater level measurements in monitoring well BH23-2S as follows: Depth (m) Elev. (m) Date 10.97 11.03 10.90 24-Oct-23 119.58 26-Oct-23 119.52 23 13-Nov-23 119.65 06--Dec-23 19-Dec-23 10.96 10.95 119.59 119.61 10-Jan-24 10.99 119.56 21-Oct-24 10.80 119.75 2. Groundwater level measurements in monitoring well BH23-2D as follows: 24 Depth (m) 3 11.30 3 11.45 Elev. (m) 119.27 119.12 Date 25-Oct-23 26-Oct-23 2451\02_DATA\GINT\1546820.GPJ GAL-MIS.GDT 2/8/24 RB 12-Nov-23 06--Dec-23 11.30 11.53 119.27 119.04 19-Dec-23 11.48 119.09 10-Jan-24 11.62 118.95 25 11.40 21-Oct-21 119.17 26 27 _DANFORTH_AVE_ 28 S:\CLIENTS\FIRST_CAPITAL\TORONTO_ 29 30 00 **115D** GTA-BHS DEPTH SCALE LOGGED: BN

1:50

CHECKED: AD

LOCATION: N 4838527.70; E 636645.56

RECORD OF BOREHOLE: BH23-3

BORING DATE: September 15, 2023

SHEET 1 OF 3

DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm DRILL RIG: Diedrichl D-20 Track Mount HAMMER TYPE: AUTOMATIC

ا پا	Щ	SOIL PROFILE	١.		SA	MPL		VAPOUR CON	CENTRA	TIBLE ATIONS [P	РМ] 🕀		AULIC CONDU k, cm/s	ICTIVITY,	Ţ	NG NG	PIEZOMETER
METRES	BORING METHOD		STRATA PLOT	ELEV.	H.		0.3m	ND = Not Detect		00 40			0 ⁻⁶ 10 ⁻⁵		10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
ME	RING	DESCRIPTION	ATA	DEPTH	NUMBER	TYPE	BLOWS/0.3m	HEADSPACE (CONCENTRAT ND = Not Detect	RGANIC	VAPOUR PM]			ATER CONTE			AB. T	INSTALLATION
ڏ	BOF		STR/	(m)	ž		BLC			00 40			0 20		WI 40	~ "	
		GROUND SURFACE		131.19				100 2		1		<u> </u>		Ĭ	Ī		
0		ASPHALT (~70 mm) thick	-/ XXX	0.00 0.07		Γ											50 mm Dia. Monitoring Well
		FILL - (SP) SAND, some gravel, trace fines; brown; non-cohesive, moist, very loose to loose			1	ss	10€	ND				0					Monitoring Weil
1				129.74		SS	4 €	ND				0					
		(SP) SAND, trace to some fines; light brown; non-cohesive, moist, compact to		1.45		1											
		very dense			3	SS	14€	3				þ					
2				4				ND									
				1		-											
					4	ss	16€					0					
				1				ND									
3				1]											
					5	ss	23 €	3				0					
				\$				ND									
				1]											
4				1	6	ss	79€	a ND					0				
						-		NU									
	lount																
	Diedrich D-20 Track Mount 200 mm O.D. Hollow Stem Auger				7	SS	416	5 1									
5	D-20 T Hollow			1	ĺ	33	I &	ND									Bentonite
	adrich I			1		1											
	200 mr			1													
	``			1													
6				1													
				4	_		20.										
					8	SS	38 [□⊕ <i>ND</i>					0				
				4		1											
7				4													
				4													
				4													
				4													
8					9	SS	51€	ND ND					0				
						1											
				4													
				4													
9																	
						1											
					10	SS	87€	ND					0				
10	_L	<u> </u>		1	<u> </u>	<u> </u>	-	+	<u></u> -	↓		├	<u> </u>	_	+	<u> </u>	
		CONTINUED NEXT PAGE															
חבי	ᄗᄔ	SCALE						1119	. 11							1 -	OGGED: BN
ובוכו	1113							• •	" [4	7							ECKED: AD

RECORD OF BOREHOLE: BH23-3

SHEET 2 OF 3

LOCATION: N 4838527.70; E 636645.56

BORING DATE: September 15, 2023

DATUM: Geodetic

무 모	ightharpoons	SOIL PROFILE			SA	MPLI		HEADSPACE COMBUSTIBLE \(\text{APOUR CONCENTRATIONS [PPM]} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CTIVITY, T	PIEZOMETER
METRES BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	VV		OR STANDPIPE INSTALLATION
10	(S	- CONTINUED FROM PREVIOUS PAGE SP) SAND, trace to some fines; light rown; non-cohesive, moist, compact to any dense			11	SS	72	ID O		
12					12	SS	72 [O O		<u>∇</u> Jan. 10, 2024
ack Mount	v Stem Auger				13	SS	85 🗔			Bentonite
19 Gledrich D-20 Track Mount	ZVV mm O.D. Hollow stem Auger	лL) SILT, trace sand; brown;		114.89 16.30	14	SS	79 [O O		
17	'n	on'cohesive, moist, very dense		113.51	15	ss	50 (2		мн	
18	(S	SP) SAND, trace fines; brown; on-cohesive, moist to wet, very dense		113.51 17.68		SS	85/ 0.28	Đị D		
20 — —		— — — — — — — — — — — — — — — — — — —			17	SS	65			Sand Screen

RECORD OF BOREHOLE: BH23-3

H23-3 SHEET 3 OF 3

LOCATION: N 4838527.70; E 636645.56

BORING DATE: September 15, 2023

DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

DRILL RIG: Diedrichl D-20 Track Mount

щ	ОР	SOIL PROFILE			SA	MPL	ES	HEADS VAPOL	JR CO	NCENT	USTIB	LE NS [P	PM] #	HYDR	AULIC C	ONDUC	TIVITY,	T	٥٦	DIEZOMETED
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	ND = N 10 HEADS CONCE ND = N	l	- 1	300 NIC VA [PPM]	40 POUR		W	/ATER C	ONTENT	T PERCE		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
DE	BOR		STR/	(m)	N		BLO			cted 200	300	40		l w	p I ───			WI 40	⋖⋬	
- 20		CONTINUED FROM PREVIOUS PAGE	ļ.,																	1.91
· 21	Diedrich D-20 Track Mount	(SP) SAND, trace fines; brown; non-cohesive, moist to wet, very dense				SS	50/ _{0.13}	. ₩0							0					Screen
		END OF BOREHOLE	1 "	21.62				IVL												
- 22		NOTE:																		
		Groundwater level measurements in monitoring well as follows :																		
		Date Depth (m) Elev. (m)																		
- 23		24-Oct-23 12.17 119.02 26-Oct-23 12.28 118.91 13-Nov-23 12.24 118.95 06-Dec-23 12.36 118.83 19-Dec-23 12.30 118.89 10-Jan-24 12.40 118.79 21-Oct-24 12.24 118.95																		
24																				
25																				
26																				
27																				
28																				
29																				
30																				
DE	PTH	SCALE							17	5									L	OGGED: BN
1:	50																		СН	ECKED: AD

RECORD OF BOREHOLE: BH23-4

SHEET 1 OF 3 DATUM: Geodetic

LOCATION: N 4838576.99; E 636730.42

BORING DATE: September 23, 2023

S	ТНОБ	SOIL PROFILE	I ⊢			MPLE		HEADSPACE COMBU VAPOUR CONCENTE ND = Not Detected 100 200	STIBLE ATIONS [PF	РМ] Ф	HYDR	AULIC CC k, cm/s			I Jak	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	HEADSPACE ORGAN CONCENTRATIONS [I ND = Not Detected			W _I	0 ⁻⁶ 10 L I ATER CO	ONTENT OW	PERCENT WI 60 40	DDITION B. TES'	OR STANDPIPE INSTALLATION
_		GROUND SURFACE		130.55				100 200	1 1	,			3 0	1		
- 0		ASPHALT (~70 mm) thick FILL - (SP) SAND, trace gravel; brown; non-cohesive, moist, very loose to loose		0.00 0.07	1	ss	9 [D⊕ ND			0					50 mm Dia. Monitoring Well
1				129.10	2	ss	4 [D⊕ ND			o					
2		(SP) SAND; brown; non-cohesive, moist, loose to very dense		1.45	3	ss	10 [∰ ND			0					
. 3					4	ss	17	⊞ ND			0					
					5	ss		⊞ ND				0				
4	nt uger				6	ss	25 [⊞ ND			0					Bentonite
5	Diedrich D-20 Track Mount 200 mm O.D. Hollow Stem Auger				7	SS	64 [Đ ND				0				
7					8	SS	46 []⊕ ND				0				
8					9	ss	81 🗓	Ð ND				0				
9					10	ss	79 🖸] ⊕ ND				0				Sand Screen
10		CONTINUED NEXT PAGE	<u> </u>	1		tΠ	-	+	†		†			<u></u> †-		

RECORD OF BOREHOLE: BH23-4

BH23-4 SHEET 2 OF 3

LOCATION: N 4838576.99; E 636730.42

BORING DATE: September 23, 2023

DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

DRILL RIG: Diedrichl D-20 Track Mount

Щ	<u> 100</u>	SOIL PROFILE			s	AMP	LES	HEADSPACE CO VAPOUR CONCE ND = Not Detected 100 200	MBUSTIE	BLE DNS [PPI	м] ⊕	HYDRAUL k, c	IC CON m/s	DUCTIV	ITY,	Ţ	وَدِ ا	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		LOT		2		.3m				_	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴	_ 1	0-3 L	ADDITIONAL LAB. TESTING	OR
MET	NG	DESCRIPTION	STRATA PLOT	ELEV	_ =	TYPE	BLOWS/0.3m	HEADSPACE OR CONCENTRATIO ND = Not Detected				WATE		TENT PE	ERCE	NT		STANDPIPE INSTALLATION
DE	30R		TRA	DEPT (m)	" <u> </u>	[3LOV					Wp ⊢		OW	—		43	
\dashv	_	001/51/1/55 550 1 555 1/2/2 5 1 5 5	σ	+ -	+	+	+"	100 200	300	400		10	20	30	4	10	+	
10		CONTINUED FROM PREVIOUS PAGE (SP) SAND; brown; non-cohesive, moist,	, in , in	+	+	+	\vdash		_				-				+	Į.AL
		loose to very dense																
			100															[3 <u>-</u>
				1														[[S
				4	1.	ı ss	85	<u></u>					0					
- 11			4.5		'		03	ND					٩					Screen
				.]														Screen S
				1														
				3														
12																	1	
]	\vdash	\dashv												
				1	12	ss	80	IÐ ND					0					
				1		_		ND									1	
				4														
13																	1	
			12.00	1														
				1														
	_ m			1													1	
	Diedrich D-20 Track Mount 200 mm O.D. Hollow Stem Auger			4	F	1												
14	Track Now Ster				13	3 SS	60	t⊕ ND					þ					
	-20 Ti		1	1	\vdash	+		-										
	Gh D.		100	1													1	
	Diedrich D-20 mm O.D. Holl			1														
	200			\$													1	
15																	1	
			18.00]		4												
				1	14	ss ss	50/ 0.15	₩ ND					0					
				1				"									1	
				4													1	
16				114.4	40													
		(SM) SILTY SAND; brown; non-cohesive,	ŢŢ.	16.														
		moist, very dense		3													1	
				1														
				:			מבי											
17				:1	15	SS	0.28	D⊕ ND					Ь				1	
				.]	\vdash	+												
				3													1	
				:														
18				:]														
				1		s ss	50/											
		END OF BOREHOLE	[.11]	112.	11 16	, 33	0.15		-+				0	+			+	
				1														
10				1														
19																	1	
				1														
																	1	
				1														
20				1														
20		CONTINUED NEXT PAGE	1	Ţ		T	1	[- - 						_		T		
		l	-	1			1										1	<u> </u>
DEI	PTH S	CALE						115	1)									OGGED: BN
	50								1									ECKED: AD

1:50

LOCATION: N 4838576.99; E 636730.42

RECORD OF BOREHOLE: BH23-4

BORING DATE: September 23, 2023

DRILL RIG: Diedrichl D-20 Track Mount

CHECKED: AD

SHEET 3 OF 3

DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm HAMMER TYPE: AUTOMATIC HEADSPACE COMBUSTIBLE
VAPOUR CONCENTRATIONS [PPM] ⊕
ND = Not Detected
100 200 300 400 $\begin{array}{c} \text{HYDRAULIC CONDUCTIVITY,} \\ \text{k, cm/s} \end{array}$ SAMPLES SOIL PROFILE BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ 10⁻⁴ 10⁻³ BLOWS/0.3m NUMBER STANDPIPE INSTALLATION TYPE ELEV. HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM] ND = Not Detected WATER CONTENT PERCENT DESCRIPTION DEPTH OW. - WI Wp -(m) --- CONTINUED FROM PREVIOUS PAGE ---20 1. Groundwater level measurements in monitoring well as follows: Depth (m) 10.81 Dry Elev. (m) 119.74 Date [24-Oct-23 26-Oct-23 21 13-Nov-23 06--Dec-23 19-Dec-23 10-Jan-24 Dry 10.91 10.91 Dry 119.64 21-Oct-24 10.63 119.92 22 23 24 GTA-BHS 001 S.\CLIENTS\FIRST_CAPITAL\TORONTO_DANFORTH_AVE_245\\102_DATA\GINT\546820.GPJ_GAL-MIS.GDT_2\8224_RB 25 26 27 28 29 30 **WSD** DEPTH SCALE LOGGED: BN

1:50

RECORD OF BOREHOLE: BH23-5

SHEET 1 OF 3

CHECKED: AD

LOCATION: N 4838589.30; E 636772.90 DATUM: Geodetic BORING DATE: September 16, 2023 DRILL RIG: Diedrichl D-20 Track Mount SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm HAMMER TYPE: AUTOMATIC HEADSPACE COMBUSTIBLE
VAPOUR CONCENTRATIONS [PPM] ⊕
ND = Not Detected
100 200 300 400 $\begin{array}{c} \text{HYDRAULIC CONDUCTIVITY,} \\ \text{k, cm/s} \end{array}$ SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ 10⁻⁴ 10⁻³ BLOWS/0.3m NUMBER STANDPIPE INSTALLATION TYPE ELEV. HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM] ND = Not Detected WATER CONTENT PERCENT DESCRIPTION DEPTH OW. Wp -(m) GROUND SURFACE 130.18 ASPHALT (~70 mm) thick 0.00 50 mm Dia. Monitoring Well FILL - (SP) SAND to gravelly SAND; brown; non-cohesive, moist, loose to 5 🗖 🕀 ND SS 2 SS 7 □ 14 T 3 SS SS 18 ⊞ 0 5 SS 18 □⊕ lo 6 SS 32 □⊕ Bentonite S:CLIENTS/FIRST_CAPITAL/TORONTO_DANFORTH_AVE_245/102_DATA/GINT/1546820.GPJ_GAL-MIS.GDT_2/8/24_RB o Diedrich D-20 Track Mount (SP) SAND; brown; non-cohesive, moist, dense to very dense 33 ND SS SS. 41 ₺ ⊕ 0 9 SS 74 🗖 🕀 ND 9 РМТ Screen CONTINUED NEXT PAGE GTA-BHS 001 DEPTH SCALE LOGGED: BN

RECORD OF BOREHOLE: BH23-5

SHEET 2 OF 3

LOCATION: N 4838589.30; E 636772.90

BORING DATE: September 16, 2023

DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

DRILL RIG: Diedrichl D-20 Track Mount

ш	8	SOIL PROFILE			SA	MPL	ES	HEADSPACE C	OMBUSTI	BLE	рмі Ф	HYDRA	ULIC CO	DNDUCT	IVITY,	Т		
DEPTH SCALE METRES	BORING METHOD		A PLOT	ELEV.	BER	TYPE	S/0.3m	HEADSPACE C VAPOUR CONC ND = Not Detecte 100 20 HEADSPACE OF				10	⁻⁶ 10) ⁻⁴ 1	0 ⁻³ NT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE
ว กัฐ	BORIN	DESCRIPTION	STRATA PLOT	DEPTH (m)	NUMBER	Y	BLOWS/0.3m	HEADSPACE OF CONCENTRATION ND = Not Detecte	d			Wp 10	—	0 3(ADE LAB.	INSTALLATION
10		CONTINUED FROM PREVIOUS PAGE						100 20	_ 300	400	-		. 2	_ 3	- 4			
- 11		(SP) SAND; brown; non-cohesive, moist, dense to very dense			10	SS	74 [□ ⊕ ND					0					Jan.10, 2024 Screen
12				_	2	PMT	-											
- 13					11	SS	66 (and ND					0					
14	Diedrich D-20 Track Mount 200 mm O.D. Hollow Stem Auger	AN Vocata Cili Ti		115.18 15.00														
16		(ML) Sandy SILT; brown; non-cohesive, moist, very dense				PMT 9S							0					
17		(SP) SAND; brown; non-cohesive, moist, very dense		112.78 17.40	_		ιυ.15°	[*] ND					`					
- 18		END OF DODELIOLS		111.43	13	SS	71 [□ ⊕ ND					0					
- 19		END OF BOREHOLE		18.75														
- 20		CONTINUED NEXT PAGE			-		_		+					- — —				
			•				_										•	

LOCATION: N 4838589.30; E 636772.90

RECORD OF BOREHOLE: BH23-5

BORING DATE: September 16, 2023

SHEET 3 OF 3

DATUM: Geodetic

ш	9	SOIL PROFILE			SA	MPLE	s	HEADSPACE COMBUSTIBLE	HYDRAULIC CONDUCTIVITY, k, cm/s	T	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	.0/S/W	VAPOUR CONCENTRATIONS [PPM] ⊕ ND = Not Detected 100 200 300 400 HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM] □ ND = Not Detected 100 200 300 400	WATER CONTENT PERCENT Wp W W 10	TES S	EZOMETER OR STANDPIPE STALLATION
- 20		CONTINUED FROM PREVIOUS PAGE NOTE:						200 300 400	25 55 40		
		Croundwater level measurements in monitoring well as follows :									
21		Date Depth (m) Elev. (m) 25-Oct-23 10.50 120.60 26-Oct-23 10.48 120.62 13-Nov-23 10.48 120.68 06-Dec-23 10.57 120.53 19-Dec-23 10.46 120.65 10-Jan-24 10.54 120.56 21-Oct-24 10.14 120.96									
- 22											
- 23											
24											
25											
26											
27											
- 28											
- 29											
30											
DEI	PTH S	CALE	•					\\\\$ [)		LOGGED:	BN

RECORD OF BOREHOLE: BH23-6

SHEET 1 OF 3

LOCATION: N 4838543.89; E 636736.50

BORING DATE: September 17, 2023

DATUM: Geodetic

DRILL RIG: Diedrichl D-20 Track Mount

ا ہٰ⊊	ΞI		1-	1	Т		-	ND = Not Detec	ted	ATIONS [F	'PMJ ⊕		k, cm/s				₽₽	PIEZOMETER	3
METRES	BORING METHOD		STRATA PLOT	ELEV.	ER	ا س	BLOWS/0.3m	HEADSPACE OVAPOUR CON ND = Not Detect 100 2					1	1	1	10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE	
¥	RING	DESCRIPTION	ATA	DEPTH	NUMBER	TYPE	3WS	HEADSPACE C CONCENTRAT	IONS [PF	VAPOUF PM]				ONTEN		ENT WI	ADDI AB. 1	INSTALLATION	
,	BOI		STR	(m)	z		BLC	ND = Not Detect	ed	00 40						WI 40	```		
		GROUND SURFACE		130.91	1														
0	\Box	ASPHALT (~70 mm) thick	-/ XXX	0.00 0.07	\Box													50 mm Dia. Monitoring Well	ı
		FILL - (SP) SAND, trace to some gravel; brown; non-cohesive, moist																Monitoring vveii	ı
			\otimes		1	SS	23€	∃ ND				0							ı
																			ı
1																			ı
Ė				1	2	SS	10€	Ð ND											ı
				129.46	_														ı
		(SP) SAND; brown; non-cohesive, moist compact to very dense		1.45 –	_														ı
		Compact to very delise			3	ss	154	a				0							ı
2						-	٦	² ND											ı
				<u> </u>	\dashv														ı
			12.00] [ı
					4	ss	20 €	ND ND				0							ı
			,	1	[ı
3				-	\dashv														ı
					5	ss	18					0							ı
					-		٠٠	_											ı
				<u> </u>															ı
4																			ı
			X.]	6	ss	26	Ð				0							ı
	je.			1															ı
	Diedrich D-20 Track Mount 200 mm O.D. Hollow Stem Auger		3.	-	\dashv														ı
	rack l				,	ss	46	a					0						ı
5	-20 T Hollov					55	70											Bentonite	ı
	lich [O.D.			<u> </u>	\dashv														ı
[0 mm																		ı
	20																		I
																			ı
6				1	\dashv														ı
						ss	ļ	(B)						0					ı
						55	ľ	, n											ı
				!	\dashv														ı
7																			ı
																			ı
			7.]															ı
]															ı
					РМТ	1	_												ı
8																			ı
				[ı
					_														ı
				<u> </u>	9	ss	50/ 0.15	Œ ND					0	.]					ı
9]	\dashv	ľ	5. 10	ND											ı
١																			I
			,																I
																			ı
																			ı
10	_L	CONTINUED NECESSAGE	- *:	 	-		-	+		 		 		+		+			L
\perp		CONTINUED NEXT PAGE																	_
DEF	PTH S	CALE						1119	N								1.	OGGED: BN	

RECORD OF BOREHOLE: BH23-6

123-6 SHEET 2 OF 3

LOCATION: N 4838543.89; E 636736.50

BORING DATE: September 17, 2023

DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

DRILL RIG: Diedrichl D-20 Track Mount

38	_							NID = Not Dotos	tod		, .		k, cm/s			1122	PIEZOMETER	3
2E	ME		STRATA PLOT		띪			HEADSPACE (VAPOUR CON ND = Not Detect 100 2					0 ⁻⁶ 10		10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE	
METRES	BORING METHOD	DESCRIPTION	TAF	ELEV. DEPTH	NUMBER	TYPE	WS/(HEADSPACE C CONCENTRAT ND = Not Detect	RGANIC	VAPOUR M]				NTENT PE		B. TI	INSTALLATION	
2	BOR		TRA	(m)	N	-	BLO					Wp		-0W	WI	₹5		
\dashv	_	CONTINUED EDOLLEDS WOULD DO S	S		\vdash	\vdash		100 2	00 30	00 40	U	1	0 2	0 30	40			
10		CONTINUED FROM PREVIOUS PAGE (SP) SAND; brown; non-cohesive, moist,			\vdash	\vdash	\vdash								+			Į
		compact to very dense																ı
																		ı
																		ı
						1												ı
11			***		PMT	2	-											ı
						1												
						-												ı
				1	10	ss	88						0				<u>√</u> Jan. 10, 2024	ı
12					L]		ND									13 10, 2027	ĺ
																		ı
			75.00]														ı
13			1	1														
13																		
				•														1
																		ĺ
					\vdash	$\mid \mid$												ĺ
14					PMT	3	-											ı
			1.00]	\vdash													ĺ
	ıt iger			1														ĺ
	Mour em Au		,			1												1
	Track w Ste			1	11	ss	50/ 0.15	₽					0				Bentonite	
15	Diedrich D-20 Track Mount 200 mm O.D. Hollow Stem Auger					1		טא										1
	drich .		**															1
	O mm		1															ı
	18		2.7	1														
16				1														
10																		ĺ
				1														ĺ
				1														ı
				114 01	\vdash	$\mid \mid$	50/											1
17		(ML) Sandy SILT; brown; non-cohesive, moist, very dense	ŢŢŢ	114.01 16.90	12	SS	50/ 0.13	ND										ı
		moist, very defise		1														ı
				1														ı
		(SP) SAND, trace fines; brown;		113.28 17.63	1													ı
		non-cohesive, wet to moist, very dense	× .															ı
18			1]														
				1		$\mid \mid$												
				1	13	ss	89/ 0.28	1 ⊕					0					ĺ
					\vdash			עא										ĺ
19																		
																		ĺ
			×*.															ĺ
]														1
					<u> </u>		50/										Sand	
20	_L	<u> </u>		∔	14	SS	50/ 0.15	∟ ⊕ ↓		- — —		∤	ام _		-+-	-	Screen	Ł
		CONTINUED NEXT PAGE		L	L							L						
		2011		_				116							_			
DEF	TH S	CALE						1119	ין ר							L	OGGED: BN	

RECORD OF BOREHOLE: BH23-6

SHEET 3 OF 3

LOCATION: N 4838543.89; E 636736.50

BORING DATE: September 17, 2023

DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

DRILL RIG: Diedrichl D-20 Track Mount

ļ.	QQ.	SOIL PROFILE		SA	MPLE	´ I VAF	ADSPACE COMBUST	TIBLE FIONS [PPM] ⊕	HYDRAULIC CONI	DUCTIVITY,	 	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	TH 🚆	TYPE	ND ND ND ND	= Not Detected 100 200 30 L	VAPOUR M]		10 ⁻⁴ 10 ⁻³ TENT PERCENT W W 30 40	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- 20		CONTINUED FROM PREVIOUS PAGE					100 200 30	400	10 20	30 40		
	Diedrich D-20 Track Mount 200 mm O.D. Hollow Stem Auger	(ML) Sandy SILT; brown; non-cohesive,	2	0.18 0.73 9.42 15	SS SS O	0/ D⊕ 115 ND			0		мн	Screen
- 22		NOTE: 1. Groundwater level measurements in		1.45								
- 23		monitoring well as follows: Date Depth (m) Elev. (m) 24-Oct-23 11.68 119.23 26-Oct-23 11.78 119.13 13-Nov-23 11.71 119.20 06-Dec-23 11.80 119.11 19-Dec-23 11.79 119.12 10-Jan-24 11.83 119.08 21-Oct-24 11.72 119.20										
24												
25												
26												
27												
28												
29												
30												
DEF	PTH S	CALE	•	•	'	•	WSD			. '		OGGED: BN ECKED: AD

DEPTH SCALE

1:50

RECORD OF BOREHOLE: **BH23-7**

SHEET 1 OF 3

LOGGED: BN

CHECKED: AD

DATUM: Geodetic

LOCATION: N 4838542.33; E 636670.74 BORING DATE: September 14, 2023 DRILL RIG: Diedrichl D-20 Track Mount SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm HAMMER TYPE: AUTOMATIC HEADSPACE COMBUSTIBLE
VAPOUR CONCENTRATIONS [PPM] ⊕
ND = Not Detected
100 200 300 400 $\begin{array}{c} \text{HYDRAULIC CONDUCTIVITY,} \\ \text{k, cm/s} \end{array}$ SAMPLES SOIL PROFILE BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ 10⁻⁴ 10⁻³ BLOWS/0.3m NUMBER STANDPIPE INSTALLATION TYPE ELEV. HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM] ND = Not Detected WATER CONTENT PERCENT DESCRIPTION DEPTH OW. Wp -(m) GROUND SURFACE 130.48 ASPHALT (~100 mm) thick Concrete 50 mm Dia. Monitoring Well FILL - (SP) SAND, some gravel, trace fines; brown; non-cohesive, moist, loose SS ND 2 SS 0 ND 0 128.60 SS (SP) SAND, some fines; brown; 3В 0 non-cohesive, moist, loose to very dense 29 **B** ND SS 0 5 SS 26 **I ⊕** *ND* 0 34 D⊕ ND 6 SS 0 S::CLIENTS/FIRST_CAPITAL\TORONTO_DANFORTH_AVE_2451\02_DATA\GINT\1546820.GPJ GAL-MIS.GDT 2/8/24 RB Diedrich D-20 Track Mount 61 (B) ND SS 0 Bentonite 62 **G** ND SS 0 (SM) SILTY SAND; brown; moist to wet ss 50/ 0.13 0 ND 9 13 🗖 ⊕ 10 SS МН CONTINUED NEXT PAGE GTA-BHS 001

RECORD OF BOREHOLE: BH23-7

SHEET 2 OF 3

LOCATION: N 4838542.33; E 636670.74

BORING DATE: September 14, 2023

DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

DRILL RIG: Diedrichl D-20 Track Mount

DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	 -		S	AMPI	_	HEADSPACE CO VAPOUR CONCE ND = Not Detected 100 200	OMBUST ENTRAT d			AULIC Co k, cm/s				- IAL	PIEZOMETER	R
TRE	G ME		STRATA PLOT	ELEV.	3ER	ň	BLOWS/0.3m				ı	Of 10 L ATER CO		1	10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE	
Ī _≅	ORIN	DESCRIPTION	RATA	DEPTH	_! =	TYPE	-ows	HEADSPACE OR CONCENTRATIO ND = Not Detected	NS [PPN	/I OUF	` □	ATER CO	OM		I WI	ADD	INSTALLATIO	N
	ă		ST	(m)	\downarrow		B	100 200			00				40	1		
10		CONTINUED FROM PREVIOUS PAGE (SM) SILTY SAND; brown; moist to wet	- 11 E		+													
		(6.11) 6.211 6.412, 2.6111, 110.61 to 1161]														ı
				}														ı
				1		-												ı
11				1	11	SS	12	Tee					0					
				1				ND					_					
				-														
																	<u>⊻</u> Jan.10, 2024	ı
				.]														
12				.]														
				1													Bentonite	
				;	12	ss	14	⊕ ND					0					
				}				"										
13				•														ı
				3														
				1														ı
	70			:														ı
14	Diedrich D-20 Track Mount 200 mm O.D. Hollow Stem Auger			:														
14	Track M ow Sterr			1	13	SS	26	ND					0					ı
	Hollow			-	-	+												ı
	Diedrich D-20 mm O.D. Hol																	,
	Diec 00 mm			.]													Sand	
15	20																	4
		- Sandy SILT interlayers from 15.2 m to		.]	14	90	60					0				МН		4
		16.9 m		;	14		30	Í ND F								"""		1
				1														1
16				;														<u> </u>
]														4
				}													[£
				}													Screen	#
17				1	15/ 15/	SS	50/ 0.10	TED ND				0	0					\$
				:	-5			טא					_					4
				:													[3	1
				:														1
				1														4
18																	1	*
				-		+	161											
				111.7	9	SS	0.25	D ⊕ ND				0						
		END OF BOREHOLE		18.6	9													
19																		
20		<u> </u>		 	- -	∔-	-	 	+			 	ļ	<u> </u>	+	-		_
		CONTINUED NEXT PAGE																_
DEI	PTH S	CALE						1115	1)							L	OGGED: BN	
	50																HECKED: AD	

RECORD OF BOREHOLE: BH23-7

SHEET 3 OF 3 DATUM: Geodetic

LOCATION: N 4838542.33; E 636670.74

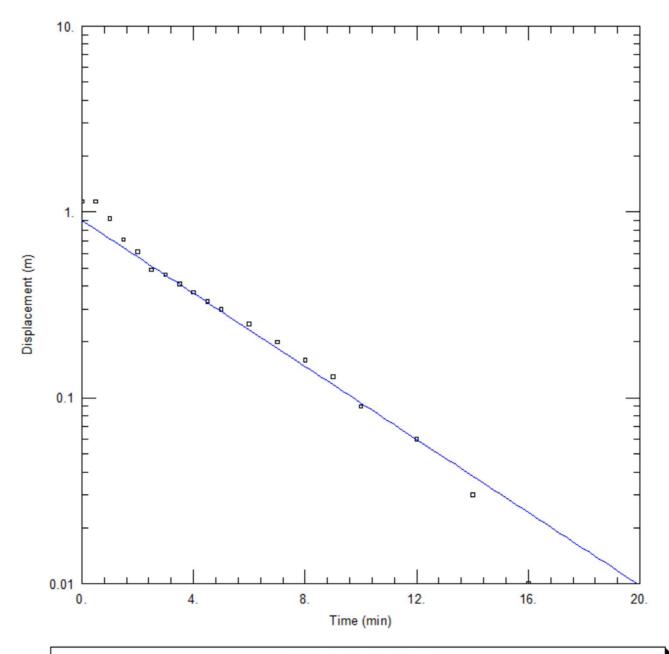
BORING DATE: September 14, 2023

Щ	4OD	SOIL PROFILE			SA	MPLE	۲Ι۱	HEADSPACE COMBUSTIBLE VAPOUR CONCENTRATIONS [РРМ] 🕀	HYDRAULIC C k, cm/s	ONDUCTIVITY,	T _g	DIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	ws/0.	HEADSPACE ORGANIC VAPOUI CONCENTRATIONS [PPM] ND = Not Detected	R	WATER C	0 ⁵ 10 ⁴ 10 ³ ONTENT PERCENT W W 20 30 40	DDITIC B. TES	PIEZOMETER OR STANDPIPE INSTALLATION
- 20		CONTINUED FROM PREVIOUS PAGE NOTE:				\blacksquare							
		Groundwater level measurements in monitoring well as follows:											
21		Date Depth (m) Elev. (m) 24-Oct-23 11.24 119.24 26-Oct-23 11.42 119.06 13-Nov-23 11.39 119.09 06-Dec-23 11.46 119.02 19-Dec-23 11.44 119.04 10-Jan-24 11.52 118.96 21-Oct-24 11.42 119.06											
- 22													
- 23													
- 24													
25													
26													
- 27													
- 28													
- 29													
30													
DEI	PTH S	SCALE	•			•	•	\\\S)				LC	OGGED: BN

November 8, 2024 22535291

APPENDIX D

Single Well Response Testing Results


Well ID	Ground Surface (masl)	Measurement Date	Water Level (mbgs)	Water Level (masl)
BH23-1	131.10	24-Oct-23	11.66	119.44
		26-Oct-23	11.73	119.37
		13-Nov-23	11.77	119.33
		6-Dec-23	11.94	119.16
		19-Dec-23	11.81	119.30
		10-Jan-24	11.91	119.19
		30-Jan-24	11.80	119.30
		21-Oct-24	11.70	119.40
BH23-2A	130.55	24-Oct-23	10.97	119.58
		26-Oct-23	11.03	119.52
		13-Nov-23	10.90	119.65
		6-Dec-23	10.96	119.59
		19-Dec-23	10.95	119.61
		10-Jan-24	10.96	119.59
		30-Jan-24	10.99	119.56
		21-Oct-24	10.80	119.75
BH23-2B	130.57	25-Oct-23	11.30	119.27
		26-Oct-23	11.45	119.12
		13-Nov-23	11.30	119.27
		6-Dec-23	11.53	119.04
		19-Dec-23	11.48	119.09
		10-Jan-24	11.60	118.97
		30-Jan-24	11.62	118.95
		21-Oct-24	11.40	119.17
BH23-3	131.19	24-Oct-23	12.17	119.02
		26-Oct-23	12.28	118.91
		13-Nov-23	12.24	118.95
		6-Dec-23	12.36	118.83
		19-Dec-23	12.30	118.89
		10-Jan-24	12.34	118.85
		30-Jan-24	12.40	118.79
		21-Oct-24	12.24	118.95
BH23-4	130.55	24-Oct-23	10.81	119.74
		26-Oct-23	-	-
		13-Nov-23	-	-

Groundwater Level Measurements

Well ID	Ground Surface (masl)	Measurement Date	Water Level (mbgs)	Water Level (masl)
		6-Dec-23	10.91	119.64
		19-Dec-23	10.91	119.64
		10-Jan-24	10.89	119.66
		30-Jan-24	-	-
		21-Oct-24	10.63	119.92
BH23-5	131.10	25-Oct-23	10.50	120.60
		26-Oct-23	10.48	120.62
		13-Nov-23	10.43	120.68
		6-Dec-23	10.57	120.53
		19-Dec-23	10.46	120.65
		10-Jan-24	10.46	120.64
		30-Jan-24	10.54	120.56
		21-Oct-24	10.14	120.96
BH23-6	130.91	25-Oct-23	11.68	119.23
		26-Oct-23	11.78	119.13
		13-Nov-23	11.71	119.20
		6-Dec-23	11.80	119.11
		19-Dec-23	11.79	119.12
		10-Jan-24	11.79	119.12
		30-Jan-24	11.83	119.08
		21-Oct-24	11.72	119.19
BH23-7	130.48	24-Oct-23	11.24	119.24
		26-Oct-23	11.42	119.06
		13-Nov-23	11.39	119.09
		6-Dec-23	11.46	119.02
		19-Dec-23	11.44	119.04
		10-Jan-24	11.53	118.95
		30-Jan-24	11.52	118.96
		21-Oct-24	11.42	119.06

Notes:

- 1. mbtoc meters below top of casing
- 2. masl meters above sea level
- 3. mbgs meters below ground surface
- 4. Table to be read in conjunction with accompanying report

Data Set: C:\...\BH23-1.aqt

Date: 01/29/24 Time: 12:54:58

PROJECT INFORMATION

Company: WSP Canada

Client: Sobeys

Project: CA-GLD-22535291

Test Well: <u>BH23-1</u> Test Date: <u>23-Nov-2023</u>

AQUIFER DATA

Saturated Thickness: 6.35 m Anisotropy Ratio (Kz/Kr): 1.

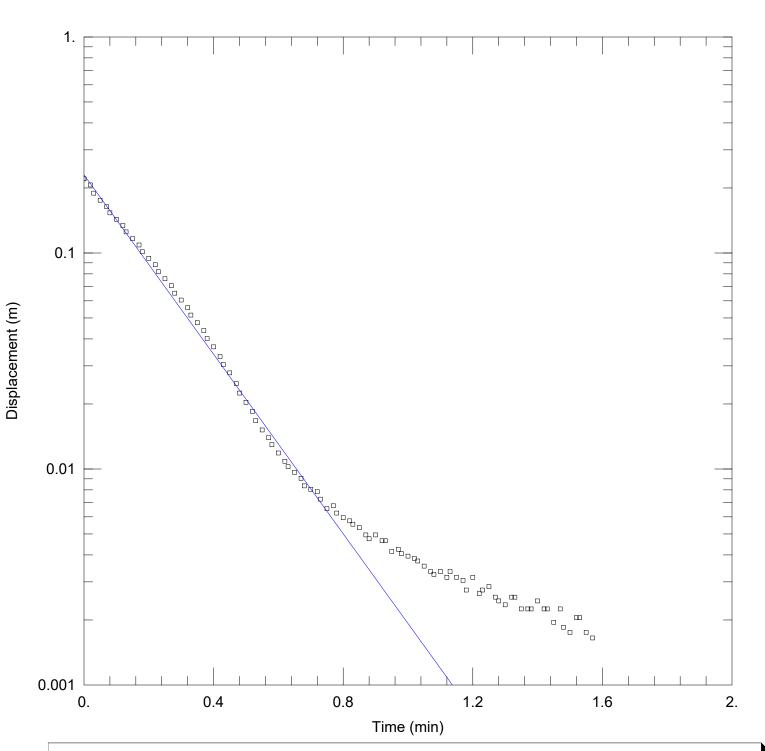
WELL DATA (BH23-1)

Initial Displacement: 1.14 m

Total Well Penetration Depth: 6.35 m

Casing Radius: 0.025 m

Static Water Column Height: 6.35 m


Solution Method: Bouwer-Rice

Screen Length: 2.1 m Well Radius: 0.1 m

SOLUTION

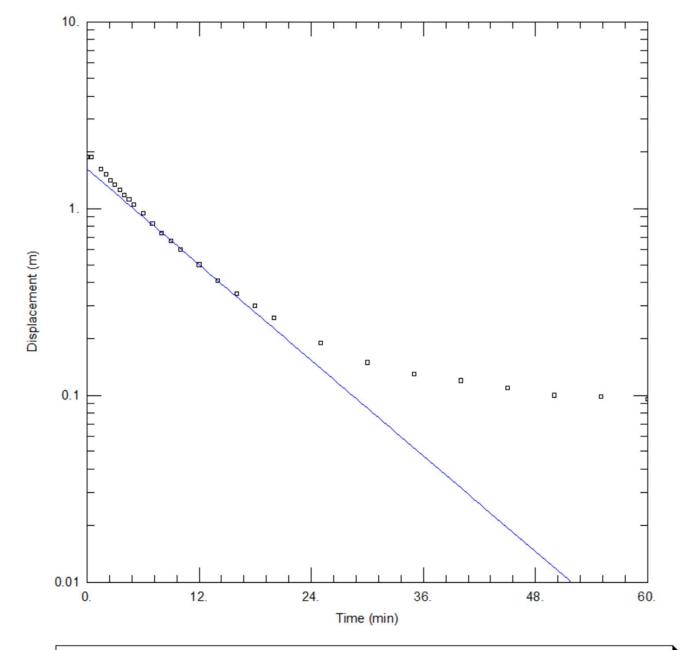
Aquifer Model: Unconfined

K = 1.624E-6 m/secy0 = 0.902 m

Data Set: C:\Users\sali\Downloads\BH23-2A.aqt

Date: 04/09/24 Time: 10:40:18

PROJECT INFORMATION


Company: WSP Canada Client: FCAM

Test Well: BH23-2A Test Date: 30-Jan-2024

AQUIFER DATA

Anisotropy Ratio (Kz/Kr): 1. Saturated Thickness: 4. m

WELL DATA (BH23-2A)

Data Set: C:\...\BH23-2B.aqt

Date: 02/14/24 Time: 10:38:03

PROJECT INFORMATION

Company: WSP Canada

Client: Sobeys

Project: <u>CA-GLD-22535291</u> Test Well: <u>BH23-2B</u>

Test Date: 23-Nov-2023

AQUIFER DATA

Saturated Thickness: 4.9 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH23-2B)

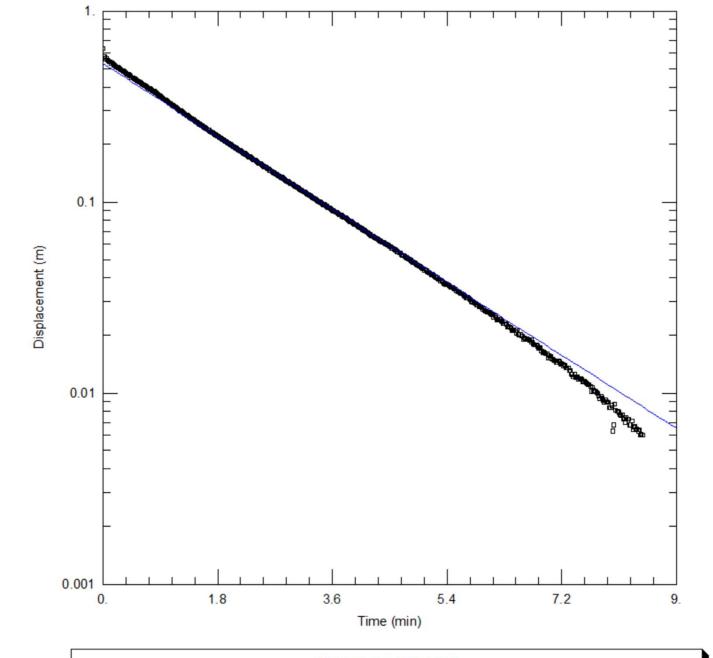
Initial Displacement: 1.89 m

Static Water Column Height: 10.48 m

Total Well Penetration Depth: 10.48 m

Screen Length: 2.59 m Well Radius: 0.1 m

Casing Radius: 0.025 m


SOLUTION

Aquifer Model: Unconfined

K = 6.425E-7 m/sec

Solution Method: Bouwer-Rice

y0 = 1.626 m

Data Set: C:\...\BH23-3.aqt

Date: 02/14/24 Time: 15:04:18

PROJECT INFORMATION

Company: WSP Canada

Client: FCAM Test Well: BH23-3 Test Date: 30-Jan-2024

AQUIFER DATA

Saturated Thickness: 3.9 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH23-3)

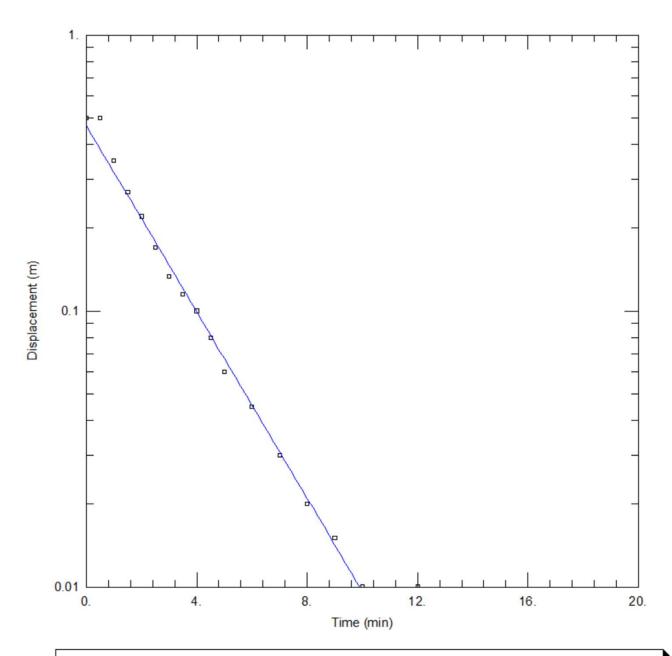
Initial Displacement: 0.638 m

Total Well Penetration Depth: 8.75 m

Casing Radius: 0.025 m

Static Water Column Height: 8.75 m

Screen Length: 2.1 m Well Radius: 0.1 m


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 3.709E-6 m/sec

y0 = 0.5304 m

Data Set: C:\...\BH23-5.aqt

Date: 01/29/24 Time: 13:09:22

PROJECT INFORMATION

Company: WSP Canada

Client: Sobeys

Project: CA-GLD-22535291

Test Well: BH23-5 Test Date: 23-Nov-2023

AQUIFER DATA

Saturated Thickness: 1.62 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH23-5)

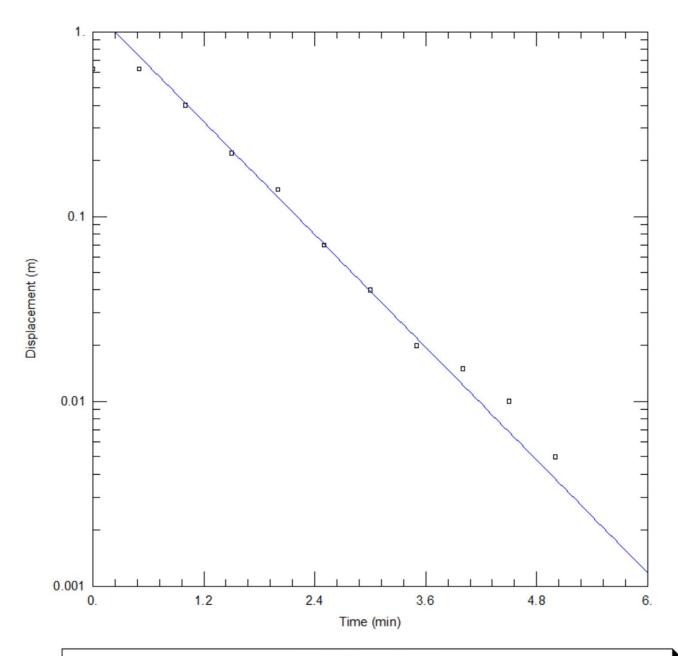
Initial Displacement: 0.5 m

Total Well Penetration Depth: 1.62 m

Casing Radius: 0.025 m

Static Water Column Height: 1.62 m

Screen Length: 1.62 m Well Radius: 0.1 m Gravel Pack Porosity: 0.3


SOLUTION

Aquifer Model: Unconfined

K = 1.403E-5 m/sec

Solution Method: Bouwer-Rice

y0 = 0.4693 m

Data Set: C:\...\BH23-6.aqt

Date: 02/14/24 Time: 10:38:49

PROJECT INFORMATION

Company: WSP Canada

Client: Sobeys

Project: CA-GLD-22535291

Test Well: <u>BH23-6</u> Test Date: <u>23-Nov-2023</u>

AQUIFER DATA

Saturated Thickness: 3.1 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH23-6)

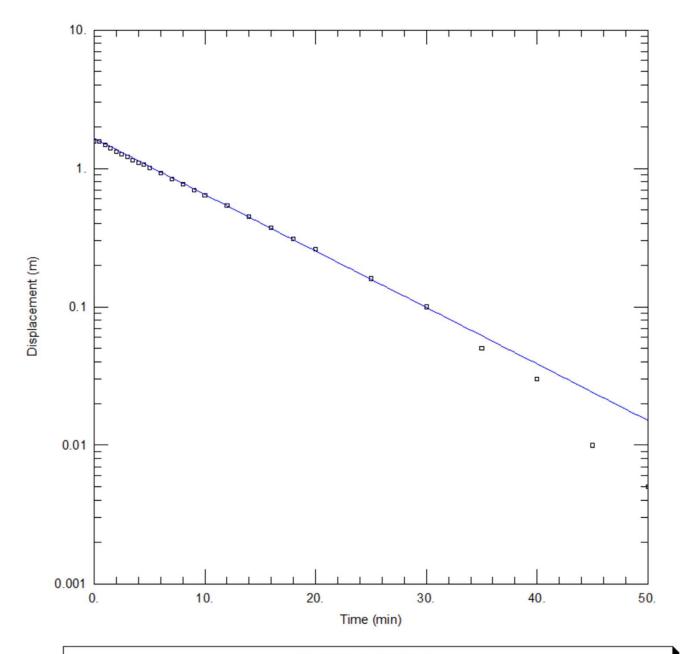
Initial Displacement: 0.63 m

Total Well Penetration Depth: 9.64 m

Casing Radius: 0.025 m

Static Water Column Height: 9.64 m

Screen Length: 1.7 m Well Radius: 0.1 m


SOLUTION

Aquifer Model: Unconfined

K = 1.078E-5 m/sec

Solution Method: Bouwer-Rice

y0 = 1.325 m

Data Set: C:\...\BH23-7.aqt

Date: 01/29/24 Time: 13:21:21

PROJECT INFORMATION

Company: WSP Canada

Client: Sobeys

Project: CA-GLD-22535291

Test Well: BH23-7

Test Date: 23-Nov-2023

AQUIFER DATA

Saturated Thickness: 6.7 m

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH23-7)

Initial Displacement: 1.57 m

Total Well Penetration Depth: 6.7 m

Casing Radius: 0.025 m

Static Water Column Height: 6.7 m

Screen Length: 3.45 m Well Radius: 0.1 m

SOLUTION

Aquifer Model: Unconfined

K = 4.39E-7 m/sec

Solution Method: Bouwer-Rice

y0 = 1.65 m

November 8, 2024 22535291

APPENDIX E

Laboratory Analysis Results

CERTIFICATE OF ANALYSIS

Final Report

C.O.C.: G113740 REPORT No: 23-035689 - Rev. 0

Report To:

WSP Canada Inc. - Barrie 121 Commerce Park Drive, Unit L

Barrie, ON L4N 8X1

CADUCEON Environmental Laboratories

110 West Beaver Creek Rd

Unit #14

Richmond Hill, ON L4B 1J9

Attention: Patrick Merritt

DATE RECEIVED: 2023-Dec-20 CUSTOMER PROJECT: CA-GLD-22535291 (2000)

2024-Jan-02 P.O. NUMBER: Sobeys Danforth

DATE REPORTED: 2024-Jan-02 SAMPLE MATRIX: Ground Water

Analyses	Qty	Site Analyzed	Authorized	Date Analyzed	Lab Method	Reference Method
Anions (Liquid)	1	OTTAWA	PCURIEL	2023-Dec-21	A-IC-01	SM 4110B
BOD5 (Liquid)	1	KINGSTON	JWOLFE2	2023-Dec-21	BOD-001	SM 5210B
Cond/pH/Alk Auto (Liquid)	1	OTTAWA	SBOUDREAU	2023-Dec-21	COND-02/PH-02/A	SM 2510B/4500H/
					LK-02	2320B
Cyanide Total (Liquid)	1	KINGSTON	JMACINNES	2023-Dec-27	CN-001	SM 4500-CN-E
E.Coli m-TECH Media (Liquid)	1	BARRIE	IMANOJ	2023-Dec-21	EC-001	MECP E3371
Chromium VI (Liquid)	1	OTTAWA	STAILLON	2023-Dec-27	D-CRVI-01	MECP E3056
ICP/MS Total (Liquid)	1	OTTAWA	AOZKAYMAK	2023-Dec-27	D-ICPMS-01	EPA 6020
ICP/OES Total (Liquid)	1	OTTAWA	APRUDYVUS	2023-Dec-27	D-ICP-01	SM 3120B
Mercury (Liquid)	1	OTTAWA	TBENNETT	2023-Dec-22	D-HG-02	SM 3112B
Nonylphenols (Subcontracted)	1	SGS_LAKEFIELD	CBURKE	2023-Dec-29		Subcontracted
Oil & Grease (Liquid)	1	KINGSTON	TMCBRYDE	2023-Dec-27	O&G-001	SM 5520
PCB's (Liquid)	1	KINGSTON	CSUMMERHAYS	2023-Dec-28	PCB-001	EPA 8081
Phenols (Liquid)	1	KINGSTON	JMACINNES	2023-Dec-28	PHEN-01	MECP E3179
SVOC - Semi-Volatiles (Liquid)	1	KINGSTON	PRANA	2023-Dec-28	NAB-W-001	EPA 8270D
TP & TKN (Liquid)	1	KINGSTON	JYEARWOOD	2023-Dec-22	TPTKN-001	MECP E3516.2
TSS (Liquid)	1	KINGSTON	KKHUTSYYEVA	2023-Dec-27	TSS-001	SM 2540D
VOC-Volatiles Full (Water)	1	RICHMOND_HILL	CBURKE	2023-Dec-22	C-VOC-02	EPA 8260

R.L. = Reporting Limit

NC = Not Calculated

Test methods may be modified from specified reference method unless indicated by an $\,^*$

Final Report

REPORT No: 23-035689 - Rev. 0

				Client I.D.	BH23-6
				Sample I.D.	23-035689-1
Parameter	Units	R.L.	Limits	Date Collected	2023-Dec-20
E coli	CFU/100mL	1	Lillito		5
pH @25°C	pH units	-	11.5, 9.5	SAN, STORM	7.87
Fluoride	mg/L	0.1	10	SAN	<0.7
BOD5	mg/L	3	300, 15	SAN, STORM	<3
Total Suspended Solids	mg/L	3	350, 15	SAN, STORM	292
Phosphorus (Total)	mg/L	0.01	10, 0.4	SAN, STORM	0.06
Total Kjeldahl Nitrogen	mg/L	0.1	100	SAN	0.3
Cyanide (Total)	mg/L	0.005	2, 0.02	SAN, STORM	0.010
Phenolics	mg/L	0.001	1, 0.008	SAN, STORM	<0.001
Aluminum (Total)	mg/L	0.01	50	SAN	0.91
Cadmium (Total)	mg/L	0.005	0.7, 0.008	SAN, STORM	<0.005
Chromium (Total)	mg/L	0.002	4, 0.08	SAN, STORM	0.003
Cobalt (Total)	mg/L	0.005	5	SAN	0.005
Copper (Total)	mg/L	0.002	2, 0.04	SAN, STORM	0.006
Lead (Total)	mg/L	0.02	1, 0.12	SAN, STORM	<0.02
Manganese (Total)	mg/L	0.001	5, 0.05	SAN, STORM	0.074
Molybdenum (Total)	mg/L	0.01	5	SAN	<0.01
Nickel (Total)	mg/L	0.01	2, 0.08	SAN, STORM	<0.01
Silver (Total)	mg/L	0.005	5, 0.12	SAN, STORM	<0.005
Tin (Total)	mg/L	0.05	5	SAN	<0.05
Titanium (Total)	mg/L	0.005	5	SAN	0.039

REPORT No: 23-035689 - Rev. 0

				Client I.D.	BH23-6
Parameter	Units	R.L.	Limits	Sample I.D. Date Collected	23-035689-1 2023-Dec-20
Zinc (Total)	mg/L	0.005	2, 0.04	SAN, STORM	0.012
Antimony (Total)	mg/L	0.0005	5	SAN	0.0007
Arsenic (Total)	mg/L	0.0005	1, 0.02	SAN, STORM	0.0005
Selenium (Total)	mg/L	0.005	1, 0.02	SAN, STORM	<0.005
Chromium (VI)	mg/L	0.01	2, 0.04	SAN, STORM	<0.01
Mercury	mg/L	0.00002	0.01, 0.0004	SAN, STORM	<0.00002
pH (Client Data)	pH units	-			7.75
Temperature (Client Data)	°C	-			12.3

REPORT No: 23-035689 - Rev. 0

				Client I.D.	BH23-6
Parameter	Units	R.L.	Limits	Sample I.D. Date Collected	23-035689-1 2023-Dec-20
Benzene	mg/L	0.0005	0.01, 0.002	SAN, STORM	<0.0005
Chloroform	mg/L	0.001	0.04, 0.002	SAN, STORM	0.002
Dichlorobenzene,1,2-	mg/L	0.0005	0.05, 0.0056	SAN, STORM	<0.0005
Dichlorobenzene,1,4-	mg/L	0.0005	0.08, 0.0068	SAN, STORM	<0.0005
Dichloroethylene,1,2-cis-	mg/L	0.0005	4, 0.0056	SAN, STORM	<0.0005
Dichloropropene,1,3-trans-	mg/L	0.0005	0.14, 0.0056	SAN, STORM	<0.0005
Ethylbenzene	mg/L	0.0005	0.16, 0.002	SAN, STORM	<0.0005
Dichloromethane (Methylene Chloride)	mg/L	0.005	2, 0.0052	SAN, STORM	<0.005
Tetrachloroethane,1,1,2,2-	mg/L	0.0005	1.4, 0.017	SAN, STORM	<0.0005
Tetrachloroethylene	mg/L	0.0005	1, 0.0044	SAN, STORM	<0.0005
Toluene	mg/L	0.0005	0.016, 0.002	SAN, STORM	<0.0005
Trichloroethylene	mg/L	0.0005	0.4, 0.0076	SAN, STORM	<0.0005
Xylene, m,p-	mg/L	0.001			<0.001
Xylene, m,p,o-	mg/L	0.0011	1.4, 0.0044	SAN, STORM	<0.0011
Xylene, o-	mg/L	0.0005			<0.0005
Oil and Grease (Mineral)	mg/L	1.0	15	SAN	<1.0
Oil and Grease (Anim/Veg)	mg/L	1.0	150	SAN	<1.0

Final Report

REPORT No: 23-035689 - Rev. 0

				Client I.D.	BH23-6
Parameter	Units	R.L.	Limits	Sample I.D. Date Collected	23-035689-1 2023-Dec-20
Acenaphthene	mg/L	0.00005			<0.00005
Acenaphthylene	mg/L	0.00005			<0.00005
Anthracene	mg/L	0.00005			<0.00005
Benzo[a]anthracene	mg/L	0.00005			<0.00005
Benzo(a)pyrene	mg/L	0.00001			<0.00001
Benzo(b)fluoranthene	mg/L	0.00005			<0.00005
Benzo(g,h,i)perylene	mg/L	0.00005			<0.00005
Benzo(k)fluoranthene	mg/L	0.00005			<0.00005
Bis(2-ethylhexyl) Phthalate	mg/L	0.005	0.012, 0.0088	SAN, STORM	<0.005
Chrysene	mg/L	0.00005			<0.00005
Dibenzo(a,h)anthracene	mg/L	0.00005			<0.00005
Di-n-Butyl Phthalate	mg/L	0.001	0.08, 0.015	SAN, STORM	<0.001
Dichlorobenzidine,3,3'-	mg/L	0.0005	0.002, 0.0008	SAN, STORM	<0.0005
Fluoranthene	mg/L	0.00005			<0.00005
Fluorene	mg/L	0.00005			<0.00005
Indeno(1,2,3,-cd)Pyrene	mg/L	0.00005			<0.00005
Methylnaphthalene,1-	mg/L	0.00005			<0.00005
Methylnaphthalene,2-(1-)	mg/L	0.001			<0.001
Methylnaphthalene,2-	mg/L	0.00005			<0.00005
Naphthalene	mg/L	0.00005			<0.00005
Pentachlorophenol	mg/L	0.0002	0.005, 0.002	SAN, STORM	<0.0002

				Client I.D.	BH23-6
				Sample I.D.	23-035689-1
				Date Collected	2023-Dec-20
Parameter	Units	R.L.	Limits		-
Phenanthrene	mg/L	0.00005			<0.00005
Pyrene	mg/L	0.00005			<0.00005
Total PAH	mg/L	0.0001	0.005, 0.002	SAN, STORM	<0.0001
				Client I.D.	BH23-6
				Sample I.D.	23-035689-1
				Date Collected	2023-Dec-20
Parameter	Units	R.L.	Limits		-
Poly-Chlorinated Biphenyls (PCB's)	mg/L	0.00005	0.001, 0.0004	SAN, STORM	<0.00005
Identification Comment	-	-			-
Subcontracted Analyses				Client I.D.	BH23-6
				Sample I.D.	23-035689-1
				Date Collected	2023-Dec-20
Parameter	Units	R.L.	Limits		-
Nonylphenol Monoethoxylate	mg/L	-			<0.01
Nonylphenol Diethoxylate	mg/L	-			<0.01
Nonylphenols	mg/L	-	0.02, 0.001	SAN, STORM	<0.001
Nonylphenol Ethoxylates	mg/L	-	0.2, 0.01	SAN, STORM	<0.01

: City of Toronto Sewer Use By-Law SAN: Sanitary Sewer By Law STORM: Storm Sewer By Law

Summary of Exceedances		
Sanitary Sewer By Law		
BH23-6	Found Value	Limit
Total Suspended Solids	292	350
Manganese (Total)	0.074	5
Storm Sewer By Law		
BH23-6	Found Value	Limit
Total Suspended Solids	292	15
Manganese (Total)	0.074	0.05

Michelle Dubien Data Specialist

GENERAL SAMPLE SUBMISSION FOR	RM sa	MPLES SUBMIT	TED TO:			TE	STING	REQU	UREMEN	TS						RE	PORT NUI	MBER (Lab U	se)
C A D U C E N ENVIRONMENTAL LABORATORIES Client commetted. Guelly assured. Providy Cleredian		Kingston Ottawa Richmond Hill Barrie Windsor	X		O'Reg 153/04 O'Reg 406/19 RPI Coarse MISA Other:	Table Table	(1 - 9.1)	1	CC Medium/Fir PWQO	SF	PLP Table	(1-9.1) Agric O'Re Land	cultural g 558 TC	toring	2	3-1	03	568	39
Are any samples to be submitted intended	d for Human Consu	imption under a					Yes		No		(If yes, s	submit	all Drin	king Wa	ter Sam	ples on a D		ter Chain of Cu	
Contact: Patric4 Merrith Tel: 451692 Fax:	Porh Du Bamie	nerce r. Wait L		g Address (if different):	Sami	Sever	y law	ANA	LYSES	REQUE	STED			Contaminated		REQUESTE	100%	vance Surcharge Surcharge
Email: Pafrick. Merriff@ WSp.com Additional lata (amail call atc):	P.O. #:	253521 (26. -Waste Water, SW=	Project I Sday Addition Surface Water,	lame or #: Composition Al Info: GW=Groundwater, L	S=Liquid Sludge,	SS=Soil	+ Storn	2 33 R. S=S	oil, Sed=S	ediment,	PC=Paint	t Chips,	F=Filter	r, Oil = 0	Suspected Highly	X	Bronze	25% 5-7 da	Surcharge Surcharge ays
Lab		S.P.L. (Watertrax)	Sample Matrix *	Date Collected (yy-mm-dd)	Time Collected				-	Test For	Each Sam	ple			x	pH	leid Temp.	# Bottles/ Sample	Field Filtered
No. Sample Source and/or Sample Identification BHZ3-6		(seatoricax)	GW	23-12-20		X		ay u	sing A one	CK mark i	0.110 001	FTOVIO	990000		8	2.78		15	N
31102 3			900	22 10 10	10 90	14										" 1 8	3	1	
								+						+	+	6.7			
						+	-	+	+					+	-				
					(81)	-		+		_					-				
		16					200				13								
					- Burn			1	0	3									
K-1Lember	*2), ILa	nber (0	16),0	an chemy	nutra to	d	140	15	a		18								
K-ILamber (metals +	K. GVI	211		1 150	1'													
RH-vals	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7			100			13				1							
B-bacti				10 45	-st				9			1							
	(. ol . la .			16.		0		\top					1						
SGS-16 amber	(NY (NPE				9			+										01	9 6
SAMPLE SUBMISSION INFORMATION		SHIPPING	G INFORMATI	ON	REPOR	TING / IN	VVOICIN	NG			SA	AMPLE	RECEIV	/ING INF	ORMAT	TION (LABO	RATORYU	SE ONLY)	
Sampled by: Submitted by	Courier (Client account)		Invoice	Report by Fax	[ved By (0	·Du	exe		Signature:	4	4	
Print Rafricu Merritt ->		Caduceon account)			Report by Email	[X				d (yy-mm		23	-	20	Time Recei	ved:	15.25	
Sign: M ->	Drop Off		X	# of Pieces	Invoice by Email		X		Labo	ratory Pr	epared B	Bottles:	1	Yes		No	14		
Date (yy-min-ddyTime: Date (yy-min-ddy		n (Pick-up)			Invoice by Mail				Samp	le Temp	erature °	C:	4		Label	ed by:			
Comments:																	Page	l of	
																	G 1	137	4()

C	GS	Rec	quest for Laborator	y Services	and CHA	IN OF C	CUSTOD	Y (Gene	ral)				
2	GO.	SGS Environmental Services - Lakefield	d: 185 Concession St., Lakefi	eld, ON KOL 2H0	Phone: 705-65	2-2000 To	l Free: 877-7	47-7658 Fax	x: 705-652-	6365 Web: v	www.ca.sgs	.com	
		SGS Environmental Services - London:	657 Consortium Court, Londo	on, ON, N6E 2S8	Phone: 519-67	72-4500 To	ll Free: 877-8	48-8060 Fa	× 519-672-	0361 Web:	www.ca.sgs	i.com	
			Laboratory Inf	ormation Se	ction						Stiere		
Received	Date (mm/dd/yy	yy): / /			LAB LIMS	#:							
	Time (After Hou				Temperatu		Pagaint (*	C)-					
Neceived	Time (Alter Flou	is only).	Billing & Repo	orting Inform		ne opon	receipt (0).					315000
9	Company:	Caduceon Environmental Laboratories				Quote	#:						
Invoice/Receipt to {3}:	Attention:	Christine Burke				1	ed Dozema	4n n 1 lints				-	
ece 3:		112 Commerce Park Drive, Unit L				Attache	d Paramo	ter List:			YES		NO
(3 E)	Address:	Barrie ON				TO THE			Turnaro	und Time	9		
/oic		L4N 8W8				Is *Rus	h Turnaro	und Time	e Requir	ed?		☐ YES	☑ NO
=	Email:	cburke@caduceonlabs.com, tsexsmith@cadu	ceonlabs.com			Specify			o moquii				
Project I	Name/Number:		P.O. #:	23-035689			Requests Re	quire Lab Ap	proval				
THE PARTY OF THE P		Client In	formation/Report To:			Sea Contract			152.00.00	Client L	ab #:	NAME	
Con	nnany Namo:	Caduceon Environmental Laboratorio				Phone	Numbe	r·		289-47	5-5442		
COII	iipaily Name.	Caddeon Environmental Laboratorio	15			Filone	Numbe	ж.		203-41	3-3442		
Co	ontact Name:	Christine Burke				Fax N	umber:			866-56	2-1963		
							on of the second						
	Address:	Same as Above				E-mail	1:			Same	as Abov	re	
	Copy to:					-							
	оору ю.												
			Sample	Information		_							TERROR DI
								Ar	nalysis	Reques	ted		
						(plea		nter the analysis required below and chec					ck off
			85950000				whic	h analy	sis app	lies to d	each sa	mple)	
Completed at the state of		Date	Time	# of		T					T		
		Sample Identifier	Sampled (mm/dd/yy)	Sampled	Bottles	sio	- m						
			(IIIIIIIIIIIIII)			nonylphenols	nonylphenol ethoxylates						
						l d	l dd sy						
						, E	yn ç						
						2	et u			-		-	
		BH23-6 (35689-1)	12-20-23	13:30	1	X	X						
						-	-			-	-	-	-
100							-		-	-	-	-	-
						-	+			-		-	
							1			-		-	
							_			-		-	
							-			-	-	-	
										-			-
-					//		-			-		-	
				1	/								
S	ampled By {1}:	Client	(Signature)	11	1			Date:	12/	20/23	3	(mm/	dd/yy)

(Signature) Note: (1) Submission of samples to SGS is acknowledgement that you have been provided direction on sample collection/handling and transportation of samples. (2) Submission of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request.

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Relinquished by (2): C. Burke

Your Project #: 22535291 Site Location: DANFORTH Your C.O.C. #: C#1018511-01-01

Attention: Samara Kadhim

WSP Canada Inc.
2 International Boulevard
Suite 201
Toronto, ON
CANADA M9W 1A2

Report Date: 2024/10/30

Report #: R8383907 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4X0209 Received: 2024/10/21, 15:59

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Sewer Use By-Law Semivolatile Organics	1	2024/10/28	2024/10/30	CAM SOP 00301	EPA 8270 m
Biochemical Oxygen Demand (BOD)	1	2024/10/23	2024/10/28	CAM SOP-00427	SM 24 5210B m
Chromium (VI) in Water	1	N/A	2024/10/23	CAM SOP-00436	EPA 7199 m
Total Cyanide	1	2024/10/22	2024/10/22	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2024/10/23	2024/10/24	CAM SOP-00449	SM 24 4500-F C m
Mercury in Water by CVAA	1	2024/10/23	2024/10/23	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	2024/10/23	2024/10/23	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	1	N/A	2024/10/21	CAM SOP-00552	SM9222B, MECP E3371
Total Nonylphenol in Liquids by HPLC	1	2024/10/26	2024/10/28	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2024/10/26	2024/10/28	CAM SOP-00313	In-house Method
Animal and Vegetable Oil and Grease	1	N/A	2024/10/26	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2024/10/26	2024/10/26	CAM SOP-00326	EPA1664B m,SM5520B m
Polychlorinated Biphenyl in Water	1	2024/10/24	2024/10/24	CAM SOP-00309	EPA 8082A m
Phenols (4AAP)	1	N/A	2024/10/28	CAM SOP-00444	OMOE E3179 m
pH	1	2024/10/23	2024/10/24	CAM SOP-00413	SM 24th-4500H+ B
Total Kjeldahl Nitrogen in Water	1	2024/10/24	2024/10/28	CAM SOP-00938	OMOE E3516 m
Total PAHs (1)	1	N/A	2024/10/28	CAM SOP - 00301	
Mineral/Synthetic O & G (TPH Heavy Oil) (2)	1	2024/10/26	2024/10/26	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2024/10/23	2024/10/25	CAM SOP-00428	SM 24 2540D m
Volatile Organic Compounds in Water	1	N/A	2024/10/23	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Your Project #: 22535291 Site Location: DANFORTH Your C.O.C. #: C#1018511-01-01

Attention: Samara Kadhim

WSP Canada Inc.
2 International Boulevard
Suite 201
Toronto, ON
CANADA M9W 1A2

Report Date: 2024/10/30

Report #: R8383907 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4X0209

Received: 2024/10/21, 15:59

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Total PAHs include only those PAHs specified in the sewer use by-by-law.
- (2) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ashton Gibson, Project Manager Email: ashton.gibson@bureauveritas.com Phone# (905)817-5765

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Report Date: 2024/10/30

WSP Canada Inc.

Client Project #: 22535291 Site Location: DANFORTH

Sampler Initials: SK

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID				AGLK53			AGLK53		
Sampling Date				2024/10/21			2024/10/21		
Sampling Date				12:30			12:30		
COC Number				C#1018511-01-01			C#1018511-01-01		
	UNITS	Criteria	Criteria-2	MW23-6	RDL	QC Batch	MW23-6 Lab-Dup	RDL	QC Batch
Calculated Parameters									
Total Animal/Vegetable Oil and Grease	mg/L	-	150	<0.50	0.50	9713931			
Inorganics									
Total BOD	mg/L	15	300	<2	2	9718434			
Fluoride (F-)	mg/L	-	10	<0.10	0.10	9720608			
Total Kjeldahl Nitrogen (TKN)	mg/L	-	100	1.1	0.20	9723655	0.87	0.20	9723655
рН	рН	6.0:9.5	6.0:11.5	7.92		9720609			
Phenols-4AAP	mg/L	0.008	1.0	<0.0010	0.0010	9727865			
Total Suspended Solids	mg/L	15	350	10	10	9716231			
Total Cyanide (CN)	mg/L	0.02	2	0.0082	0.0050	9715276			
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	-	-	<0.50	0.50	9726651			
Total Oil & Grease Mineral/Synthetic	mg/L	-	15	<0.50	0.50	9726653			
									-

No Fill

No Exceedance

Grey Black Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Toronto Storm Sewer Discharge Use By-Law

Criteria-2: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the Chapter 681.

Client Project #: 22535291 Site Location: DANFORTH

Sampler Initials: SK

NONYL PHENOL AND NONYL PHENOL ETHOXYLATE (WATER)

Bureau Veritas ID				AGLK53		
Sampling Date				2024/10/21 12:30		
COC Number				C#1018511-01-01		
	UNITS	Criteria	Criteria-2	MW23-6	RDL	QC Batch
Miscellaneous Parameters	UNITS	Criteria	Criteria-2	MW23-6	RDL	QC Batch
Miscellaneous Parameters Nonylphenol Ethoxylate (Total)	mg/L	O.01	Criteria-2	MW23-6 <0.005	RDL 0.005	QC Batch 9726659

No Fill

No Exceedance

Grey

Black

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Toronto Storm Sewer Discharge Use By-Law

Criteria-2: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the

Chapter 681.

Client Project #: 22535291 Site Location: DANFORTH

Sampler Initials: SK

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID				AGLK53		
Campling Data				2024/10/21		
Sampling Date				12:30		
COC Number				C#1018511-01-01		
	UNITS	Criteria	Criteria-2	MW23-6	RDL	QC Batch
Metals						
Chromium (VI)	ug/L	40	2000	0.63	0.50	9719156
Mercury (Hg)	mg/L	0.0004	0.01	<0.00010	0.00010	9718712
Total Aluminum (Al)	ug/L	-	50000	200	4.9	9718500
Total Antimony (Sb)	ug/L	-	5000	<0.50	0.50	9718500
Total Arsenic (As)	ug/L	20	1000	<1.0	1.0	9718500
Total Cadmium (Cd)	ug/L	8	700	0.22	0.090	9718500
Total Chromium (Cr)	ug/L	80	4000	<5.0	5.0	9718500
Total Cobalt (Co)	ug/L	-	5000	<0.50	0.50	9718500
Total Copper (Cu)	ug/L	40	2000	3.8	0.90	9718500
Total Lead (Pb)	ug/L	120	1000	0.57	0.50	9718500
Total Manganese (Mn)	ug/L	50	5000	6.8	2.0	9718500
Total Molybdenum (Mo)	ug/L	-	5000	<0.50	0.50	9718500
Total Nickel (Ni)	ug/L	80	2000	2.0	1.0	9718500
Total Phosphorus (P)	ug/L	400	10000	<100	100	9718500
Total Selenium (Se)	ug/L	20	1000	<2.0	2.0	9718500
Total Silver (Ag)	ug/L	120	5000	<0.090	0.090	9718500
Total Tin (Sn)	ug/L	-	5000	1.2	1.0	9718500
Total Titanium (Ti)	ug/L	-	5000	<5.0	5.0	9718500
Total Zinc (Zn)	ug/L	40	2000	29	5.0	9718500

No Fill

No Exceedance

Grey Black Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Toronto Storm Sewer Discharge Use By-Law

Criteria-2: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the

Chapter 681.

Client Project #: 22535291 Site Location: DANFORTH

Sampler Initials: SK

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Bureau Veritas ID)				AGLK53		
Sampling Date					2024/10/21		
Jamping Date					12:30		
COC Number					C#1018511-01-01		
		UNITS	Criteria	Criteria-2	MW23-6	RDL	QC Batch
Semivolatile Orga	anics						
Di-N-butyl phthal	ate	ug/L	15	80	<2	2	9729790
Bis(2-ethylhexyl)p	ohthalate	ug/L	8.8	12	<2	2	9729790
3,3'-Dichlorobenz	idine	ug/L	0.8	2	<0.8	0.8	9729790
Pentachlorophen	ol	ug/L	2	5	<1	1	9729790
Phenanthrene		ug/L	-	-	<0.2	0.2	9729790
Anthracene		ug/L	-	-	<0.2	0.2	9729790
Fluoranthene		ug/L	-	-	<0.2	0.2	9729790
Pyrene		ug/L	-	-	<0.2	0.2	9729790
Benzo(a)anthrace	ene	ug/L	-	-	<0.2	0.2	9729790
Chrysene		ug/L	-	-	<0.2	0.2	9729790
Benzo(b/j)fluoran	ithene	ug/L	-	-	<0.2	0.2	9729790
Benzo(k)fluoranti	nene	ug/L	-	-	<0.2	0.2	9729790
Benzo(a)pyrene		ug/L	-	-	<0.2	0.2	9729790
Indeno(1,2,3-cd)p	yrene	ug/L	-	-	<0.2	0.2	9729790
Dibenzo(a,h)anth	racene	ug/L	-	-	<0.2	0.2	9729790
Benzo(g,h,i)peryle	ene	ug/L	-	-	<0.2	0.2	9729790
Dibenzo(a,i)pyrer	ne	ug/L	-	-	<0.2	0.2	9729790
Benzo(e)pyrene		ug/L	-	-	<0.2	0.2	9729790
Perylene		ug/L	-	-	<0.2	0.2	9729790
Dibenzo(a,j) acrid	line	ug/L	-	-	<0.4	0.4	9729790
7H-Dibenzo(c,g) (Carbazole	ug/L	-	-	<0.4	0.4	9729790
1,6-Dinitropyrene	5	ug/L	-	-	<0.4	0.4	9729790
1,3-Dinitropyrene	5	ug/L	-	-	<0.4	0.4	9729790
1,8-Dinitropyrene	5	ug/L	-	-	<0.4	0.4	9729790
Calculated Param	neters						
Total PAHs (18 PA	AHs)	ug/L	2	5	<1	1	9714918
Surrogate Recove	ery (%)	•					
2,4,6-Tribromoph	enol	%	-	-	86		9729790
No Fill	No Exceeda	nce					

No Fill
Grey
Black

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Toronto Storm Sewer Discharge Use By-Law

Criteria-2: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the Chapter 681.

Client Project #: 22535291 Site Location: DANFORTH

Sampler Initials: SK

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Bureau Veritas ID				AGLK53		
Sampling Date				2024/10/21 12:30		
COC Number				C#1018511-01-01		
	UNITS	Criteria	Criteria-2	MW23-6	RDL	QC Batch
2-Fluorobiphenyl	%	-	-	71		9729790
D14-Terphenyl (FS)	%	-	-	105		9729790
D5-Nitrobenzene	%	-	-	71		9729790
D8-Acenaphthylene	%	-	-	75		9729790

No Fill

No Exceedance

Grey Black Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Toronto Storm Sewer Discharge Use By-Law

Criteria-2: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the

Chapter 681.

Client Project #: 22535291 Site Location: DANFORTH

Sampler Initials: SK

VOLATILE ORGANICS BY GC/MS (WATER)

Bureau Veritas ID				AGLK53		
Sampling Date				2024/10/21		
Janipinig Date				12:30		
COC Number				C#1018511-01-01		
	UNITS	Criteria	Criteria-2	MW23-6	RDL	QC Batch
Volatile Organics						
Benzene	ug/L	2	10	<0.20	0.20	9715921
Chloroform	ug/L	2	40	1.6	0.20	9715921
1,2-Dichlorobenzene	ug/L	5.6	50	<0.40	0.40	9715921
1,4-Dichlorobenzene	ug/L	6.8	80	<0.40	0.40	9715921
cis-1,2-Dichloroethylene	ug/L	5.6	4000	<0.50	0.50	9715921
trans-1,3-Dichloropropene	ug/L	5.6	140	<0.40	0.40	9715921
Ethylbenzene	ug/L	2	160	<0.20	0.20	9715921
Methylene Chloride(Dichloromethane)	ug/L	5.2	2000	<2.0	2.0	9715921
1,1,2,2-Tetrachloroethane	ug/L	17	1400	<0.40	0.40	9715921
Tetrachloroethylene	ug/L	4.4	1000	<0.20	0.20	9715921
Toluene	ug/L	2	16	<0.20	0.20	9715921
Trichloroethylene	ug/L	7.6	400	<0.20	0.20	9715921
p+m-Xylene	ug/L	-	-	<0.20	0.20	9715921
o-Xylene	ug/L	-	-	<0.20	0.20	9715921
Total Xylenes	ug/L	4.4	1400	<0.20	0.20	9715921
Surrogate Recovery (%)						
4-Bromofluorobenzene	%	-	-	103		9715921
D4-1,2-Dichloroethane	%	-	-	110		9715921
D8-Toluene	%	-	-	93		9715921

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Toronto Storm Sewer Discharge Use By-Law

Criteria-2: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the Chapter 681

Client Project #: 22535291 Site Location: DANFORTH

Sampler Initials: SK

POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

Bureau Veritas	i ID				AGLK53		
Comming Date					2024/10/21		
Sampling Date					12:30		
COC Number					C#1018511-01-01		
		UNITS	Criteria	Criteria-2	MW23-6	RDL	QC Batch
PCBs							
Total PCB		ug/L	0.4	1	<0.05	0.05	9722834
Surrogate Reco	overy (%)						
Decachlorobip	henyl	%	-	-	90		9722834
No Fill	No Exceeda	nce					
Grey	Exceeds 1 c	riteria p	olicy/leve	el .			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Toronto Storm Sewer Discharge Use By-Law

Exceeds both criteria/levels

Criteria-2: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the

Chapter 681.

Black

Client Project #: 22535291 Site Location: DANFORTH

Sampler Initials: SK

MICROBIOLOGY (WATER)

Bureau Verita:	s ID			AGLK53				
Sampling Date	1			2024/10/21				
				12:30				
COC Number				C#1018511-01-01				
		UNITS	Criteria	MW23-6	RDL	QC Batch		
Microbiological								
Escherichia col	i	CFU/100mL	200	<10	10	9714920		
No Fill	No Exceedan	ce						
Grey	Exceeds 1 cri	teria policy/le	evel					
Black	Exceeds both	criteria/leve	ls					
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
Criteria: Toron	to Storm Sewe	r Discharge U	se By-Lav	V				

Client Project #: 22535291 Site Location: DANFORTH

Sampler Initials: SK

TEST SUMMARY

Bureau Veritas ID: AGLK53

Collected: 2024/10/21 Shipped:

Sample ID: MW23-6 Matrix: Water

Received: 2024/10/21

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sewer Use By-Law Semivolatile Organics	GC/MS	9729790	2024/10/28	2024/10/30	Kathy Horvat
Biochemical Oxygen Demand (BOD)	DO	9718434	2024/10/23	2024/10/28	Nusrat Naz
Chromium (VI) in Water	IC	9719156	N/A	2024/10/23	Harpuneet Kaur
Total Cyanide	SKAL/CN	9715276	2024/10/22	2024/10/22	Prgya Panchal
Fluoride	ISE	9720608	2024/10/23	2024/10/24	Nachiketa Gohil
Mercury in Water by CVAA	CV/AA	9718712	2024/10/23	2024/10/23	Gagandeep Rai
Total Metals Analysis by ICPMS	ICP/MS	9718500	2024/10/23	2024/10/23	Azita Fazaeli
E.coli, (CFU/100mL)	PL	9714920	N/A	2024/10/21	Farhana Rahman
Total Nonylphenol in Liquids by HPLC	LC/FLU	9726658	2024/10/26	2024/10/28	Michael Huynh
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	9726659	2024/10/26	2024/10/28	Michael Huynh
Animal and Vegetable Oil and Grease	BAL	9713931	N/A	2024/10/26	Automated Statchk
Total Oil and Grease	BAL	9726651	2024/10/26	2024/10/26	Jay Hareshkumar Vaghasia
Polychlorinated Biphenyl in Water	GC/ECD	9722834	2024/10/24	2024/10/24	Svitlana Shaula
Phenols (4AAP)	TECH/PHEN	9727865	N/A	2024/10/28	Sachi Patel
рН	AT	9720609	2024/10/23	2024/10/24	Nachiketa Gohil
Total Kjeldahl Nitrogen in Water	SKAL	9723655	2024/10/24	2024/10/28	Kruti Jitesh Patel
Total PAHs	CALC	9714918	N/A	2024/10/28	Automated Statchk
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	9726653	2024/10/26	2024/10/26	Jay Hareshkumar Vaghasia
Total Suspended Solids	BAL	9716231	2024/10/23	2024/10/25	Razieh Tabesh
Volatile Organic Compounds in Water	GC/MS	9715921	N/A	2024/10/23	Manpreet Sarao

Bureau Veritas ID: AGLK53 Dup Sample ID: MW23-6

Matrix: Water

Collected: 2024/10/21

Shipped:

Received: 2024/10/21

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Kjeldahl Nitrogen in Water	SKAL	9723655	2024/10/24	2024/10/28	Kruti Jitesh Patel

Client Project #: 22535291 Site Location: DANFORTH

Sampler Initials: SK

GENERAL COMMENTS

Each te	emperature is the	average of up to t	three cooler temperatures taken at receipt						
	Package 1	6.0°C							
		·	_						
Result	Results relate only to the items tested.								

QUALITY ASSURANCE REPORT

WSP Canada Inc.

Client Project #: 22535291

Site Location: DANFORTH Sampler Initials: SK

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9715921	4-Bromofluorobenzene	2024/10/23	103	70 - 130	103	70 - 130	103	%				
9715921	D4-1,2-Dichloroethane	2024/10/23	106	70 - 130	105	70 - 130	106	%				
9715921	D8-Toluene	2024/10/23	99	70 - 130	100	70 - 130	94	%				
9722834	Decachlorobiphenyl	2024/10/24	132 (1)	60 - 130	84	60 - 130	92	%				
9729790	2,4,6-Tribromophenol	2024/10/29			93	10 - 130	59	%				
9729790	2-Fluorobiphenyl	2024/10/29			77	30 - 130	69	%				
9729790	D14-Terphenyl (FS)	2024/10/29			96	30 - 130	100	%				
9729790	D5-Nitrobenzene	2024/10/29			76	30 - 130	70	%				
9729790	D8-Acenaphthylene	2024/10/29			81	30 - 130	71	%				
9715276	Total Cyanide (CN)	2024/10/22	96	80 - 120	100	80 - 120	<0.0050	mg/L	NC	20		
9715921	1,1,2,2-Tetrachloroethane	2024/10/23	97	70 - 130	96	70 - 130	<0.40	ug/L	NC	30		
9715921	1,2-Dichlorobenzene	2024/10/23	100	70 - 130	100	70 - 130	<0.40	ug/L	NC	30		
9715921	1,4-Dichlorobenzene	2024/10/23	100	70 - 130	100	70 - 130	<0.40	ug/L	NC	30		
9715921	Benzene	2024/10/23	100	70 - 130	100	70 - 130	<0.20	ug/L	NC	30		
9715921	Chloroform	2024/10/23	103	70 - 130	103	70 - 130	<0.20	ug/L	1.0	30		
9715921	cis-1,2-Dichloroethylene	2024/10/23	106	70 - 130	104	70 - 130	<0.50	ug/L	NC	30		
9715921	Ethylbenzene	2024/10/23	96	70 - 130	97	70 - 130	<0.20	ug/L	NC	30		
9715921	Methylene Chloride(Dichloromethane)	2024/10/23	104	70 - 130	103	70 - 130	<2.0	ug/L	NC	30		
9715921	o-Xylene	2024/10/23	100	70 - 130	104	70 - 130	<0.20	ug/L	NC	30		
9715921	p+m-Xylene	2024/10/23	94	70 - 130	96	70 - 130	<0.20	ug/L	NC	30		
9715921	Tetrachloroethylene	2024/10/23	98	70 - 130	98	70 - 130	<0.20	ug/L	NC	30		
9715921	Toluene	2024/10/23	99	70 - 130	99	70 - 130	<0.20	ug/L	NC	30		
9715921	Total Xylenes	2024/10/23					<0.20	ug/L	NC	30		
9715921	trans-1,3-Dichloropropene	2024/10/23	115	70 - 130	104	70 - 130	<0.40	ug/L	NC	30		
9715921	Trichloroethylene	2024/10/23	102	70 - 130	102	70 - 130	<0.20	ug/L	NC	30		
9716231	Total Suspended Solids	2024/10/25			100	80 - 120	<10	mg/L	13	20		
9718434	Total BOD	2024/10/28					<2	mg/L	1.1	30	99	80 - 120
9718500	Total Aluminum (AI)	2024/10/23	102	80 - 120	100	80 - 120	<4.9	ug/L	10	20		
9718500	Total Antimony (Sb)	2024/10/23	104	80 - 120	101	80 - 120	<0.50	ug/L	NC	20		
9718500	Total Arsenic (As)	2024/10/23	103	80 - 120	101	80 - 120	<1.0	ug/L	NC	20		
9718500	Total Cadmium (Cd)	2024/10/23	99	80 - 120	99	80 - 120	<0.090	ug/L	NC	20		

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc.

Client Project #: 22535291

Site Location: DANFORTH

Sampler Initials: SK

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9718500	Total Chromium (Cr)	2024/10/23	98	80 - 120	97	80 - 120	<5.0	ug/L	NC	20		
9718500	Total Cobalt (Co)	2024/10/23	95	80 - 120	95	80 - 120	<0.50	ug/L	NC	20		
9718500	Total Copper (Cu)	2024/10/23	100	80 - 120	97	80 - 120	<0.90	ug/L	1.4	20		
9718500	Total Lead (Pb)	2024/10/23	93	80 - 120	97	80 - 120	<0.50	ug/L	NC	20		
9718500	Total Manganese (Mn)	2024/10/23	97	80 - 120	96	80 - 120	<2.0	ug/L	4.7	20		
9718500	Total Molybdenum (Mo)	2024/10/23	104	80 - 120	98	80 - 120	<0.50	ug/L	10	20		
9718500	Total Nickel (Ni)	2024/10/23	95	80 - 120	96	80 - 120	<1.0	ug/L	11	20		
9718500	Total Phosphorus (P)	2024/10/23	108	80 - 120	94	80 - 120	<100	ug/L	NC	20		
9718500	Total Selenium (Se)	2024/10/23	101	80 - 120	104	80 - 120	<2.0	ug/L	NC	20		
9718500	Total Silver (Ag)	2024/10/23	95	80 - 120	95	80 - 120	<0.090	ug/L	NC	20		
9718500	Total Tin (Sn)	2024/10/23	101	80 - 120	98	80 - 120	<1.0	ug/L	NC	20		
9718500	Total Titanium (Ti)	2024/10/23	104	80 - 120	96	80 - 120	<5.0	ug/L	NC	20		
9718500	Total Zinc (Zn)	2024/10/23	98	80 - 120	101	80 - 120	<5.0	ug/L	4.1	20		
9718712	Mercury (Hg)	2024/10/23	100	75 - 125	100	80 - 120	<0.00010	mg/L	NC	20		
9719156	Chromium (VI)	2024/10/23	107	80 - 120	101	80 - 120	<0.50	ug/L	NC	20		
9720608	Fluoride (F-)	2024/10/24	106	80 - 120	107	80 - 120	<0.10	mg/L	8.0	20		
9720609	рН	2024/10/24			102	98 - 103			0.52	N/A		
9722834	Total PCB	2024/10/24	130	60 - 130	89	60 - 130	<0.05	ug/L	NC	40		
9723655	Total Kjeldahl Nitrogen (TKN)	2024/10/28	103	80 - 120	101	80 - 120	<0.10	mg/L	NC	20	98	80 - 120
9726651	Total Oil & Grease	2024/10/26			99	80 - 110	<0.50	mg/L	0.25	25		
9726653	Total Oil & Grease Mineral/Synthetic	2024/10/26			96	65 - 130	<0.50	mg/L	0.52	25		
9726658	Nonylphenol (Total)	2024/10/28	90	50 - 130	100	50 - 130	<0.001	mg/L	0.78	40		
9726659	Nonylphenol Ethoxylate (Total)	2024/10/28	86	50 - 130	94	50 - 130	<0.005	mg/L	NC	40		
9727865	PhenoIs-4AAP	2024/10/28	99	80 - 120	103	80 - 120	<0.0010	mg/L	NC	20		
9729790	1,3-Dinitropyrene	2024/10/29			115	30 - 130	<0.4	ug/L	3.9	40		
9729790	1,6-Dinitropyrene	2024/10/29			96	30 - 130	<0.4	ug/L	3.7	40		
9729790	1,8-Dinitropyrene	2024/10/29			117	30 - 130	<0.4	ug/L	2.7	40		
9729790	3,3'-Dichlorobenzidine	2024/10/29			108	30 - 130	<0.8	ug/L	9.0	40		
9729790	7H-Dibenzo(c,g) Carbazole	2024/10/29			82	30 - 130	<0.4	ug/L	0.29	40		
9729790	Anthracene	2024/10/29			89	30 - 130	<0.2	ug/L	0.84	40		
9729790	Benzo(a)anthracene	2024/10/29			98	30 - 130	<0.2	ug/L	6.2	40		

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc.

Client Project #: 22535291

Site Location: DANFORTH

Sampler Initials: SK

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits	
9729790	Benzo(a)pyrene	2024/10/29			104	30 - 130	<0.2	ug/L	1.6	40			
9729790	Benzo(b/j)fluoranthene	2024/10/29			99	30 - 130	<0.2	ug/L	4.6	40			
9729790	Benzo(e)pyrene	2024/10/29			96	30 - 130	<0.2	ug/L	1.4	40			
9729790	Benzo(g,h,i)perylene	2024/10/29			102	30 - 130	<0.2	ug/L	0.51	40			
9729790	Benzo(k)fluoranthene	2024/10/29			89	30 - 130	<0.2	ug/L	13	40			
9729790	Bis(2-ethylhexyl)phthalate	2024/10/29			97	30 - 130	<2	ug/L	6.0	40			
9729790	Chrysene	2024/10/29			94	30 - 130	<0.2	ug/L	1.4	40			
9729790	Dibenzo(a,h)anthracene	2024/10/29			103	30 - 130	<0.2	ug/L	0.93	40			
9729790	Dibenzo(a,i)pyrene	2024/10/29			65	30 - 130	<0.2	ug/L	0.75	40			
9729790	Dibenzo(a,j) acridine	2024/10/29			95	30 - 130	<0.4	ug/L	2.1	40			
9729790	Di-N-butyl phthalate	2024/10/29			96	30 - 130	<2	ug/L	3.0	40			
9729790	Fluoranthene	2024/10/29			99	30 - 130	<0.2	ug/L	3.0	40			
9729790	Indeno(1,2,3-cd)pyrene	2024/10/29			115	30 - 130	<0.2	ug/L	13	40			
9729790	Pentachlorophenol	2024/10/29			37	30 - 130	<1	ug/L	2.9	40			
9729790	Perylene	2024/10/29			101	30 - 130	<0.2	ug/L	1.4	40			
9729790	Phenanthrene	2024/10/29			86	30 - 130	<0.2	ug/L	0.38	40			
9729790	Pyrene	2024/10/29			100	30 - 130	<0.2	ug/L	3.8	40			

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Surrogate recovery was above the upper control limit due to matrix interference. This may represent a high bias in some results.

Client Project #: 22535291 Site Location: DANFORTH

Sampler Initials: SK

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Clistia Camine
Cristina Carriere, Senior Scientific Specialist
Forham Rahman
Farhana Rahman, Senior Analyst

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

UREA ERIT		NVOICE TO:				REPO	RT TO:					PROJ	ECT INFORMATION:			Laboratory Use	Only:
any Na	me #23879 WSP C	anada Inc.		Compa	ny Name:			i fally l	-1111		Quotation #: C41059					Bureau Veritas Job #:	Bottle Order #:
on:	Accounts Payab			Attentio		a Kadhim	Sycol A	R	-		P.O. #:		District of				
SS:	2 International E Toronto ON M9\	oulevard Suite 20	1	Addres	s:			_			Project:	2.7	535291			222	1018511
	(416) 798-0065		(905) 550-2288	Tel:	417	925 713	7 Fax:	510			Project Name: Site #:	_	both			COC#:	Project Manage
	capayablesinvoi		(0.00)	Email:	Samar	a.Kadhim@w		ed, al	1 40	WIO.	Sampled By:	Sam	200			C#1018511-01-01	Ashton Gibson
OE F	REGULATED DRINKIN	G WATER OR WA	TER INTENDED F	OR HUMAN	CONSUMPTION	MUST BE				1			E BE SPECIFIC)			Turnaround Time (TAT) I	Required:
	SUBMITTED ON	THE BUREAU VER	RITAS DRINKING V	WATER CHAI	N OF CUSTODY		÷	ó								Please provide advance notice	for rush projects
Reg	ulation 153 (2011)		Other Regulation	5	Special Ir	structions	circle):	ar (100-	7							Standard) TAT: ad if Rush TAT is not specified):	
e 1	Res/Park Mediu		Sanitary Sewer				Gr V	Sewe	(Wa						0.04	T = 5-7 Working days for most tests	
e 2 e 3	Ind/Comm Coars		Storm Sewer B Municipality		and a		(ple	torm	yHS						Please note: days - contac	Standard TAT for certain tests such as a tyour Project Manager for details.	BOD and Dioxins/Furans a
le _		PWQO	Reg 406 Table				Field Filtered (please c Metals / Hg / Cr VI	ary&8	36s-t						Job Specifi	c Rush TAT (if applies to entire sub	mission)
		Other _					d Filt	Sanit	A 53						Date Require		ime Required:
	Include Criter	ia on Certificate of					Field	Toronto 2016)	L Ged							nation Number:((call lab for #)
S	ample Barcode Label	Sample (Location	on) Identification	Date Samples	Time Sampled	Matrix		To.	2						# of Bottles	Comn	nents
		MW 23-	6	0421	12:30	GW	N	X							18		
_		14/00 2	~	2027	1.9					-							
							15 31										
										ļ '	1						
											21			3			
						-	Lane in			٠,	21-	Oct-24 1:	5:59				
										I III	shton G	ibson	Ac-				
							vinite 1			† · · · · · ·	C4X0	11111111111111111111111111111111111111	II :				
							. Indian			1		209					
							-			KK.	5 E	NV-1652				NOI	NT-2024-10-50
_									_				 				F K .
		1		1												THE PARTY	
_															_		
									L,				<u></u>				
-	* RELINQUISHED BY:	(Signature/Print)	Date: (YY)	. /	Time	Suc	BY: (Signature/	LVA		Date: (YY/N	1	Time	# jars used and not submitted		tive	tory Use Only Custody S	ent I v. I
51	imax Kao	hin	1 0(+ 2	1,7074 7	:00pm 51	C Sort	Vel A	LUM	10 1	1010/11	6/41	1:11		Time Sense	Temperat	ere (°C) on Recei Custody's	Seal Yes

Bureau Veritas Canada (2019) Inc.

Client Project #: 22535291 Site Location: DANFORTH

Sampler Initials: SK

Exceedance Summary Table – Toronto Storm Sewer Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS				
No Exceedances										
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to										
applicable regulatory guidelines										

Exceedance Summary Table – Toronto Sanitary Sewer **Result Exceedances**

Sample ID	Bureau Veritas ID	Parameter	Criteri	a Result	DL	UNITS
No Exceedances						
The exceedance summary	table is for information purp	oses only and shou	ld not be considered a cor	nprehensive listing or	r statement of	conformance to

applicable regulatory guidelines.

